Skip to main content

Shear Thickening Fluid-Based Vibration Damping Applications

  • Chapter
  • First Online:
Smart Systems with Shear Thickening Fluid

Abstract

Vibration damping is a challenging issue in engineering structures. In recent years, shear thickening fluid (STF) has emerged as a promising material for smart vibration damping applications. Non-Newtonian rheology of STF provides adaptive damping properties for smart applications. In this chapter, non-Newtonian rheology of STF is explained as well as discussing vibration damping behavior of STF. Moreover, a case study of STF-integrated structures is presented for better understanding the vibration damping properties. Due to its non-Newtonian rheology, STF is a good candidate in adaptive damping applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuo, H., Bi, K., Hao, H.: A state-of-the-art review on the vibration mitigation of wind turbines. Renew. Sust. Energ. Rev. 121, 109710 (2020)

    Article  Google Scholar 

  2. Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials: a review. Compos. Struct. 136, 460–480 (2016)

    Article  Google Scholar 

  3. Wagner, N.J., Brady, J.F.: Shear thickening in colloidal dispersions. Phys. Today. 62(10), 27–32 (2009)

    Article  CAS  Google Scholar 

  4. Gürgen, S., Li, W., Kuşhan, M.C.: The rheology of shear thickening fluids with various ceramic particle additives. Mater. Des. 104, 312–319 (2016)

    Article  Google Scholar 

  5. Gürgen, S., Sofuoğlu, M.A.: Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes. Compos. Struct. 226, 111236 (2019)

    Article  Google Scholar 

  6. Wei, M., Lin, K., Sun, L.: Shear thickening fluids and their applications. Mater. Des. 216, 110570 (2022)

    Article  CAS  Google Scholar 

  7. Galindo-Rosales, F.: Complex fluids in energy dissipating systems. Appl. Sci. 6(8), 206 (2016)

    Article  Google Scholar 

  8. Mari, R., Seto, R., Morris, J.F., Denn, M.M.: Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58(6), 1693–1724 (2014)

    Article  CAS  Google Scholar 

  9. Gürgen, S., Kuşhan, M.C., Li, W.: Shear thickening fluids in protective applications: a review. Prog. Polym. Sci. 75, 48–72 (2017)

    Article  Google Scholar 

  10. Liu, D.M.: Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction. J. Mater. Sci. 35(21), 5503–5507 (2000)

    Article  CAS  Google Scholar 

  11. Srivastava, A., Majumdar, A., Butola, B.S.: Improving the impact resistance of textile structures by using shear thickening fluids: a review. Crit. Rev. Solid State Mater. Sci. 37(2), 115–129 (2012)

    Article  CAS  Google Scholar 

  12. Gürgen, S., Sofuoğlu, M.A.: Smart polymer integrated cork composites for enhanced vibration damping properties. Compos. Struct. 258, 113200 (2021)

    Article  Google Scholar 

  13. Fu, K., Wang, H., Zhang, Y.X., Ye, L., Escobedo, J.P., Hazell, P.J., et al.: Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures. Int. J. Impact Eng. 139, 103525 (2020)

    Article  Google Scholar 

  14. Gürgen, S., Sofuoğlu, M.A., Kuşhan, M.C.: Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28(3), 035027 (2019)

    Article  Google Scholar 

  15. Zhou, H., Yan, L., Jiang, W., Xuan, S., Gong, X.: Shear thickening fluid–based energy-free damper: design and dynamic characteristics. J. Intell. Mater. Syst. Struct. 27(2), 208–220 (2016)

    Article  Google Scholar 

  16. Sheikhi, M.R., Gürgen, S., Altuntas, O., Sofuoğlu, M.A.: Anti-impact and vibration-damping design of cork-based sandwich structures for low-speed aerial vehicles. Arch. Civ. Mech. Eng. 23(2), 71 (2023)

    Article  Google Scholar 

  17. Lin, K., Zhou, A., Liu, H., Liu, Y., Huang, C.: Shear thickening fluid damper and its application to vibration mitigation of stay cable. Structure. 26, 214–223 (2020)

    Article  Google Scholar 

  18. Wei, M., Hu, G., Jin, L., Lin, K., Zou, D.: Forced vibration of a shear thickening fluid sandwich beam. Smart Mater. Struct. 25(5), 055041 (2016)

    Article  Google Scholar 

  19. Yeh, S.K., Lin, J.J., Zhuang, H.Y., Chen, Y.C., Chang, H.C., Zheng, J.Y., et al.: Light shear thickening fluid (STF)/Kevlar composites with improved ballistic impact strength. J. Polym. Res. 26(6), 155 (2019)

    Article  Google Scholar 

  20. Sun, L., Wang, G., Zhang, C., Jin, Q., Song, Y.: On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid. Nanotechnol. Rev. 10(1), 1339–1348 (2021)

    Article  CAS  Google Scholar 

  21. Huang, W., Wu, Y., Qiu, L., Dong, C., Ding, J., Li, D.: Tuning rheological performance of silica concentrated shear thickening fluid by using graphene oxide. Adv. Condens. Matter. Phys. 2015, 1–5 (2015)

    Article  Google Scholar 

  22. Gürgen, S., Kuşhan, M.C., Li, W.: The effect of carbide particle additives on rheology of shear thickening fluids. Korea-Aust. Rheol. J. 28(2), 121–128 (2016)

    Article  Google Scholar 

  23. Galindo-Rosales, F.J., Martínez-Aranda, S., Campo-Deaño, L.: CorkSTFμfluidics – a novel concept for the development of eco-friendly light-weight energy absorbing composites. Mater. Des. 82, 326–334 (2015)

    Article  Google Scholar 

  24. Gürgen, S., Fernandes, F.A.O., de Sousa, R.J.A., Kuşhan, M.C.: Development of eco-friendly shock-absorbing Cork composites enhanced by a non-Newtonian fluid. Appl. Compos. Mater. 28(1), 165–179 (2021)

    Article  Google Scholar 

  25. Gürgen, S., De Sousa, R.J.A.: Rheological and deformation behavior of natural smart suspensions exhibiting shear thickening properties. Arch. Civ. Mech. Eng. 20(4), 110 (2020)

    Article  Google Scholar 

  26. Ghosh, A., Majumdar, A., Butola, B.S.: Role of surface chemistry of fibres additives on rheological behavior of ceramic particle based shear thickening fluids. Ceram. Int. 44(17), 21514–21524 (2018)

    Article  CAS  Google Scholar 

  27. Gürgen, S., Sofuoğlu, M.A.: Vibration attenuation of sandwich structures filled with shear thickening fluids. Compos. Part B Eng. 186, 107831 (2020)

    Article  Google Scholar 

  28. Nakonieczna, P., Wierzbicki, Ł., Wróblewski, R., Płociński, T., Leonowicz, M.: The influence of carbon nanotube addition on the properties of shear thickening fluid. Bull. Mater. Sci. 42(4), 162 (2019)

    Article  Google Scholar 

  29. Gong, X., Zhang, J., Xuan, S.: Multi-functional systems based on shear thickening fluid. In: Gürgen, S. (ed.) Shear Thickening Fluid [Internet], pp. 53–75. Springer, Cham (2023) Available from: https://link.springer.com/10.1007/978-3-031-25717-9_4 [cited 2023 Aug 16]

    Chapter  Google Scholar 

  30. Lin, N.Y.C., Guy, B.M., Hermes, M., Ness, C., Sun, J., Poon, W.C.K., et al.: Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115(22), 228304 (2015)

    Article  PubMed  Google Scholar 

  31. Hasanzadeh, M., Mottaghitalab, V.: Tuning of the rheological properties of concentrated silica suspensions using carbon nanotubes. Rheol. Acta. 55(9), 759–766 (2016)

    Article  CAS  Google Scholar 

  32. Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., Wetzel, E.D.: Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 67(3–4), 565–578 (2007)

    Article  CAS  Google Scholar 

  33. Maranzano, B.J., Wagner, N.J.: The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J. Rheol. 45(5), 1205–1222 (2001)

    Article  CAS  Google Scholar 

  34. Shum, K.M.: Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures. Eng. Struct. 31(1), 84–92 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Yay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yay, Ö., Diltemiz, S.F., Kuşhan, M.C., Gürgen, S. (2024). Shear Thickening Fluid-Based Vibration Damping Applications. In: Gürgen, S. (eds) Smart Systems with Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-53570-3_5

Download citation

Publish with us

Policies and ethics