Skip to main content

Shear Thickening Electrolytes for Lithium-Ion Batteries

  • Chapter
  • First Online:
Smart Systems with Shear Thickening Fluid
  • 61 Accesses

Abstract

This chapter provides a review of recent advancements in lithium-ion batteries (LIBs) that utilize shear thickening electrolytes (STEs). STEs are non-Newtonian fluids that exhibit a shear thickening effect when subjected to external shock, which plays a crucial role in protecting the battery system from mechanical abuse. The unique characteristic of STEs to convert between liquid and solid phases is beneficial for the safety of the batteries under certain conditions and combines the advantages of both liquid and solid electrolytes. However, the practical application of high-performance LIBs using STEs is hindered by several challenges, including impact resistance performance, ionic conductivity, electrochemical properties, and the mechanisms involved in shear thickening behavior. Hence, this chapter covers the fundamental principles, electrochemical performance, and practical applications of these battery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Q., Liang, X., Liu, B., Deng, H.: Research progress of shear thickening electrolyte based on liquid–solid conversion mechanism. Batteries. 9, 1–12 (2023). https://doi.org/10.3390/batteries9070384

    Article  CAS  Google Scholar 

  2. Liu, K., Cheng, C.F., Zhou, L., Zou, F., Liang, W., Wang, M., Zhu, Y.: A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. J. Power Sources. 423, 297–304 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.056

    Article  CAS  Google Scholar 

  3. Xu, G.L., Wang, Q., Fang, J.C., Xu, Y.F., LiPhD, J.T., HuangPhD Prof, L., Sun, S.G.: Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries. J. Mater. Chem. A. 2, 19941–19962 (2014). https://doi.org/10.1039/c4ta03823a

    Article  CAS  Google Scholar 

  4. Roy, P., Srivastava, S.K.: Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A. 3, 2454–2484 (2015). https://doi.org/10.1039/C4TA04980B

    Article  CAS  Google Scholar 

  5. Hasanzadeh, M., Mottaghitalab, V., Babaei, H., Rezaei, M.: The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Compos. Part A Appl. Sci. Manuf. 88, 263–271 (2016). https://doi.org/10.1016/j.compositesa.2016.06.006

    Article  CAS  Google Scholar 

  6. Mirrahimi, A.H., Hasanzadeh, M., Mottaghitalab, V., Sharma, P.: Numerical modelling of ballistic impact on HMPP woven fabric impregnated with shear-thickening fluids. Procedia Eng. 173, 73–76 (2017). https://doi.org/10.1016/j.proeng.2016.12.031

    Article  CAS  Google Scholar 

  7. Hasanzadeh, M., Mottaghitalab, V.: The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J. Mater. Eng. Perform. 23, 1182–1196 (2014). https://doi.org/10.1007/s11665-014-0870-6

    Article  CAS  Google Scholar 

  8. Hasanzadeh, M., Mottaghitalab, V., Sharma, P.: Puncture resistance enhancement of woven fabrics using concentrated nanosilica suspension. Procedia Eng. 173, 1494–1498 (2017). https://doi.org/10.1016/j.proeng.2016.12.228

    Article  CAS  Google Scholar 

  9. Sheikhi, M.R., Hasanzadeh, M., Gürgen, S.: The role of conductive fillers on the rheological behavior and electrical conductivity of multi-functional shear thickening fluids (M-STFs). Adv. Powder Technol. 34, 104086 (2023). https://doi.org/10.1016/j.apt.2023.104086

    Article  CAS  Google Scholar 

  10. Hasanzadeh, M., Mottaghitalab, V.: Tuning of the rheological properties of concentrated silica suspensions using carbon nanotubes. Rheol. Acta. 55, 759–766 (2016). https://doi.org/10.1007/s00397-016-0950-7

    Article  CAS  Google Scholar 

  11. Hasanzadeh, M., Mottaghitalab, V., Rezaei, M.: Rheological and viscoelastic behavior of concentrated colloidal suspensions of silica nanoparticles: a response surface methodology approach. Adv. Powder Technol. 26, 1570–1577 (2015). https://doi.org/10.1016/j.apt.2015.08.011

    Article  CAS  Google Scholar 

  12. Hoffman, R.L.: Explanations for the cause of shear thickening in concentrated colloidal suspensions. J. Rheol. (N. Y. N. Y). 42 (1998) 111. https://doi.org/10.1122/1.550884

  13. Boersma, W.H., Laven, J., Stein, H.N.: Viscoelastic properties of concentrated shear-thickening dispersions. J. Colloid Interface Sci. 149, 10–22 (1992). https://doi.org/10.1016/0021-9797(92)90385-Y

    Article  CAS  Google Scholar 

  14. Laun, H.M., Bung, R., Hess, S., Loose, W., Hess, O., Hahn, K., Hädicke, E., Hingmann, R., Schmidt, F., Lindner, P.: Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowa), J. Rheol. (N. Y. N. Y). 36 (1998) 743. https://doi.org/10.1122/1.550314

  15. Hoffman, R.L.: Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J. Colloid Interface Sci. 46, 491–506 (1974). https://doi.org/10.1016/0021-9797(74)90059-9

    Article  CAS  Google Scholar 

  16. Bender, J.W., Wagner, N.J.: Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci. 172, 171–184 (1995). https://doi.org/10.1006/JCIS.1995.1240

    Article  CAS  Google Scholar 

  17. Bender, J., Wagner, N.J.: Reversible shear thickening in monodisperse and bidisperse colloidal dispersions, J. Rheol. (N. Y. N. Y). 40 (1998) 899. https://doi.org/10.1122/1.550767

  18. Chen, Z., Chao, Y., Sayyar, S., Tian, T., Wang, K., Xu, Y., Wallace, G., Ding, J., Wang, C.: Polyethylene oxide (PEO) provides bridges to silica nanoparticles to form a shear thickening electrolyte for high performance impact resistant Lithium-ion batteries. Adv. Sci. 2302844, 1–8 (2023). https://doi.org/10.1002/advs.202302844

    Article  CAS  Google Scholar 

  19. Ye, Y., Xiao, H., Reaves, K., McCulloch, B., Mike, J.F., Lutkenhaus, J.L.: Effect of Nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries. ACS Appl. Nano Mater. 1, 2774–2784 (2018). https://doi.org/10.1021/acsanm.8b00457

    Article  CAS  Google Scholar 

  20. Ding, J., Tian, T., Meng, Q., Guo, Z., Li, W., Zhang, P., Ciacchi, F.T., Huang, J., Yang, W.: Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep02485

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasanzadeh, M. (2024). Shear Thickening Electrolytes for Lithium-Ion Batteries. In: Gürgen, S. (eds) Smart Systems with Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-53570-3_4

Download citation

Publish with us

Policies and ethics