Skip to main content

Shear Thickening Fluid in Triboelectric Nanogenerators

  • Chapter
  • First Online:
Smart Systems with Shear Thickening Fluid

Abstract

Triboelectric nanogenerators (TENGs), which are based on the coupling of contact-electrification and electrostatic induction effects, can harvest and convert mechanical energy into electrical energy. The outstanding characteristics of TENGs, such as low cost, simplicity of fabrication, lightweight, flexibility, and high efficiency, make them promising candidates to power wearable electronics. However, their weak mechanical performance makes them susceptible to damage from severe impact loads, which can lead to the collapse of the structure and a decline in electrical performance. This chapter presents a comprehensive and in-depth overview of TENG based on shear thickening fluid (STF-TENG) with improved anti-impact performance. The chapter commences with an introduction to flexible TENGs, emphasizing their working principles and operation modes. The STF and their significant role in the preparation of STF-TENG with the capability of high-energy harvesting and safeguarding effects are described. The chapter then introduces the various methods and techniques employed to fabricate STF-TENGs, as well as explores their working mechanism. The practical application of STF-TENG as a wearable healthcare device and impact monitoring system is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moghadam, B.H., Hasanzadeh, M., Simchi, A.: Self-powered wearable piezoelectric sensors based on polymer nanofiber-metal-organic framework nanoparticle composites for arterial pulse monitoring. ACS Appl. Nano Mater. 3, 8742–8752 (2020). https://doi.org/10.1021/acsanm.0c01551

    Article  CAS  Google Scholar 

  2. Fan, F.R., Tang, W., Wang, Z.L.: Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28, 4283–4305 (2016). https://doi.org/10.1002/adma.201504299

    Article  CAS  PubMed  Google Scholar 

  3. Wu, C., Wang, A.C., Ding, W., Guo, H., Wang, Z.L.: Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1–25 (2019). https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  4. Dassanayaka, D.G., Alves, T.M., Wanasekara, N.D., Dharmasena, I.G., Ventura, J.: Recent progresses in wearable triboelectric nanogenerators. Adv. Funct. Mater. 32 (2022). https://doi.org/10.1002/adfm.202205438

  5. Nurmakanov, Y., Kalimuldina, G., Nauryzbayev, G., Adair, D., Bakenov, Z.: Structural and chemical modifications towards high-performance of triboelectric nanogenerators. Nanoscale Res. Lett. 16, 122 (2021). https://doi.org/10.1186/S11671-021-03578-Z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinchet, R., Seung, W., Kim, S.W.: Recent progress on flexible triboelectric nanogenerators for selfpowered electronics. ChemSusChem. 8, 2327–2344 (2015). https://doi.org/10.1002/CSSC.201403481

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, G., Pan, C., Guo, W., Chen, C.Y., Zhou, Y., Yu, R., Wang, Z.L.: Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012). https://doi.org/10.1021/NL302560K/SUPPL_FILE/NL302560K_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  8. Yoon, H.J., Ryu, H., Kim, S.W.: Sustainable powering triboelectric nanogenerators: approaches and the path towards efficient use. Nano Energy. 51, 270–285 (2018). https://doi.org/10.1016/J.NANOEN.2018.06.075

    Article  CAS  Google Scholar 

  9. Zhong, J., Zhang, Y., Zhong, Q., Hu, Q., Hu, B., Wang, Z.L., Zhou, J.: Fiber-based generator for wearable electronics and mobile medication. ACS Nano. 8, 6273–6280 (2014). https://doi.org/10.1021/nn501732z

    Article  CAS  PubMed  Google Scholar 

  10. Paosangthong, W., Torah, R., Beeby, S.: Recent progress on textile-based triboelectric nanogenerators. Nano Energy. 55, 401–423 (2019). https://doi.org/10.1016/j.nanoen.2018.10.036

    Article  CAS  Google Scholar 

  11. Hasanzadeh, M., Mottaghitalab, V., Sharma, P.: Puncture resistance enhancement of woven fabrics using concentrated nanosilica suspension. Procedia Eng. 173, 1494–1498 (2017). https://doi.org/10.1016/j.proeng.2016.12.228

    Article  CAS  Google Scholar 

  12. Laha, A., Majumdar, A.: Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Mater. Des. 89, 286–293 (2016). https://doi.org/10.1016/j.matdes.2015.09.077

    Article  CAS  Google Scholar 

  13. Sheikhi, M.R., Hasanzadeh, M.: Multi-phase shear thickening fluid, shear thick. Fluid., 33–51 (2023). https://doi.org/10.1007/978-3-031-25717-9_3

  14. Sheikhi, M.R., Hasanzadeh, M., Gürgen, S.: Conductive shear thickening fluids for multifunctional purposes, shear thick. Fluid, 13–25 (2023). https://doi.org/10.1007/978-3-031-35521-9_2

  15. Gürgen, S., de Sousa, R.J.A.: Rheological and deformation behavior of natural smart suspensions exhibiting shear thickening properties. Arch. Civ. Mech. Eng. 20 (2020). https://doi.org/10.1007/s43452-020-00111-4

  16. Gürgen, S., Kuşhan, M.C., Li, W.: The effect of carbide particle additives on rheology of shear thickening fluids. Korea Aust. Rheol. J. 28, 121–128 (2016). https://doi.org/10.1007/s13367-016-0011-x

    Article  Google Scholar 

  17. Gürgen, S., Sofuoǧlu, M.A., Kuşhan, M.C.: Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28, 035027 (2019). https://doi.org/10.1088/1361-665X/ab018c

    Article  Google Scholar 

  18. Sheikhi, M.R., Hasanzadeh, M., Gürgen, S.: The role of conductive fillers on the rheological behavior and electrical conductivity of multi-functional shear thickening fluids (M-STFs). Adv. Powder Technol. 34, 104086 (2023). https://doi.org/10.1016/j.apt.2023.104086

    Article  CAS  Google Scholar 

  19. Lee, Y.S., Wetzel, E.D., Wagner, N.J.: The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38(13), 2825–2833 (2003). https://doi.org/10.1023/A:1024424200221

    Article  CAS  Google Scholar 

  20. Liu, L., Cai, M., Liu, X., Zhao, Z., Chen, W.: Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment. Thin-Walled Struct. 157, 107103 (2020). https://doi.org/10.1016/J.TWS.2020.107103

    Article  Google Scholar 

  21. Qin, J., Guo, B., Zhang, L., Wang, T., Zhang, G., Shi, X.: Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos. Part B Eng. 183, 107686 (2020). https://doi.org/10.1016/j.compositesb.2019.107686

    Article  CAS  Google Scholar 

  22. Gürgen, S., Yıldız, T.: Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos. Struct. 235, 111812 (2020). https://doi.org/10.1016/J.COMPSTRUCT.2019.111812

    Article  Google Scholar 

  23. Zhang, S., Wang, S., Hu, T., Xuan, S., Jiang, H., Gong, X.: Study the safeguarding performance of shear thickening gel by the mechanoluminescence method. Compos. Part B Eng. 180, 107564 (2020). https://doi.org/10.1016/j.compositesb.2019.107564

    Article  CAS  Google Scholar 

  24. Wang, S., Xuan, S., Liu, M., Bai, L., Zhang, S., Sang, M., Jiang, W., Gong, X.: Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance. Soft Matter. 13, 2483–2491 (2017). https://doi.org/10.1039/C7SM00095B

    Article  CAS  PubMed  Google Scholar 

  25. Wang, S., Ding, L., Wang, Y., Gong, X.: Multifunctional triboelectric nanogenerator towards impact energy harvesting and safeguards. Nano Energy. 59, 434–442 (2019). https://doi.org/10.1016/j.nanoen.2019.02.060

    Article  CAS  Google Scholar 

  26. Yun, S.Y., Tcho, I.W., Kim, W.G., Kim, D.W., Son, J.H., Lee, S.W., Choi, Y.K.: Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring. J. Mater. Chem. A. 10, 10383–10390 (2022). https://doi.org/10.1039/d2ta01209j

    Article  CAS  Google Scholar 

  27. Wang, S., Liu, S., Zhou, J., Li, F., Li, J., Cao, X., Li, Z., Zhang, J., Li, B., Wang, Y., Gong, X.: Advanced triboelectric nanogenerator with multi-mode energy harvesting and anti-impact properties for smart glove and wearable e-textile. Nano Energy. 78, 105291 (2020). https://doi.org/10.1016/j.nanoen.2020.105291

    Article  CAS  Google Scholar 

  28. Kim, Y., Yun, J., Kim, D.: Robust and flexible triboelectric nanogenerator using non-Newtonian fluid characteristics towards smart traffic and human-motion detecting system. Nano Energy. 98, 107246 (2022). https://doi.org/10.1016/j.nanoen.2022.107246

    Article  CAS  Google Scholar 

  29. Wang, W., Zhou, J., Wang, S., Yuan, F., Liu, S., Zhang, J., Gong, X.: Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy. 91, 106657 (2022). https://doi.org/10.1016/j.nanoen.2021.106657

    Article  CAS  Google Scholar 

  30. Zhou, J., Wang, S., Yuan, F., Zhang, J., Liu, S., Zhao, C., Wang, Y., Gong, X.: Functional Kevlar-based triboelectric nanogenerator with impact energy-harvesting property for power source and personal safeguard. ACS Appl. Mater. Interfaces. 13, 6575–6584 (2021). https://doi.org/10.1021/acsami.0c18308

    Article  CAS  PubMed  Google Scholar 

  31. Gürgen, S., Kuşhan, M.C., Li, W.: Shear thickening fluids in protective applications: a review. Prog. Polym. Sci. 75, 48–72 (2017). https://doi.org/10.1016/j.progpolymsci.2017.07.003

    Article  CAS  Google Scholar 

  32. Hasanzadeh, M., Mottaghitalab, V., Rezaei, M., Babaei, H.: Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact. Thin-Walled Struct. 119, 700–706 (2017). https://doi.org/10.1016/j.tws.2017.07.020

    Article  Google Scholar 

  33. Hasanzadeh, M., Mottaghitalab, V.: The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor. J. Mater. Eng. Perform. 23, 1182–1196 (2014). https://doi.org/10.1007/s11665-014-0870-6

    Article  CAS  Google Scholar 

  34. Hasanzadeh, M., Mottaghitalab, V., Babaei, H., Rezaei, M.: The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Compos. Part A Appl. Sci. Manuf. 88, 263–271 (2016). https://doi.org/10.1016/j.compositesa.2016.06.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Scientific and Technological Research Council of Turkey (TUBITAK, Grant No. 1059B212200845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasanzadeh, M., Gürgen, S. (2024). Shear Thickening Fluid in Triboelectric Nanogenerators. In: Gürgen, S. (eds) Smart Systems with Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-53570-3_3

Download citation

Publish with us

Policies and ethics