Skip to main content

Environmental Conservation for Sustainable Agriculture

  • Chapter
  • First Online:
Prospects for Soil Regeneration and Its Impact on Environmental Protection

Abstract

Sustainable agriculture is an effective approach towards environmental conservation. While agriculture provides food and livelihood for millions of people it also contributes to deforestation, habitat loss, soil erosion, etc. Additionally, the sector is a significant source of pollution, with pesticides and fertilisers contaminating waterways and disrupting ecosystems. Agricultural expansion often leads to the encroachment of wild lands, driving down prices and contributing to poverty. To address these challenges, sustainable agricultural practices are essential. This chapter explains how cutting-edge techniques can help reduce agriculture’s negative environmental effects and ensure long-term food production. These techniques include crop breeding, carbon sequestration, microbiome management, and climate smart irrigation. Reducing reliance on natural resources and using inputs more effectively are two ways to promote sustainable agriculture. Sustainable agriculture takes a holistic approach to farming by integrating three key objectives: social equity, economic profitability, and environmental health. By adopting these principles and leveraging technological advancements, the future of environmental conservation and sustainable agriculture looks promising. Environmental conservation is paramount for sustainable agriculture. We can reduce the damaging effects of agriculture on the environment while ensuring long-term food production and security by implementing sustainable practises, such as organic farming and climate-smart agriculture. Prioritising the adoption of these strategies is essential if we are to create an agricultural system that is resilient and sustainable for both the present and the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards CA (1989) The importance of integration in sustainable agricultural systems. Agr Ecosyst Environ 27(1–4):25–35

    Article  Google Scholar 

  2. Prutzer E, Patrick A, Ishtiaque A, Vij S, Stock R, Gardezi M (2023) Climate-smart irrigation and responsible innovation in South Asia: a systematic mapping. Ambio 1–14

    Google Scholar 

  3. Harwood RR (2020) A history of sustainable agriculture. In: Sustainable agricultural systems. CRC Press, pp 3–19. eBook ISBN 9781003070474. https://doi.org/10.1201/9781003070474

  4. Horrigan L, Lawrence RS, Walker P (2002) How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110(5):445–456. https://doi.org/10.4060/cb4474en

    Article  Google Scholar 

  5. Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20(3):229–236

    Article  Google Scholar 

  6. Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, ... Phillips AL (2009) Mutation discovery for crop improvement. J Exp Botany 60(10):2817–2825

    Google Scholar 

  7. FAO (2017) The future of food and agriculture—trends and challenges. Rome. ISBN 978-92-5-109551-5

    Google Scholar 

  8. Sukumar R, Venkataraman A, Cheeran JV, Mujumdar PP, Baskaran N, Dharmarajan G, ... Narendran K (2003) Study of elephants in Buxa Tiger Reserve and adjoining areas in northern West Bengal and preparation of conservation action plan. Final Report. Centre for Ecological Sciences, Indian Institute of Science, Bangalore

    Google Scholar 

  9. Pretty J (2008) Agricultural sustainability: concepts, principles, and evidence. Philos Trans Royal Soc B: Biol Sci 363(1491):447–465

    Article  Google Scholar 

  10. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  Google Scholar 

  11. Rai AK, Bana SR, Sachan DS, Singh B (2023) Advancing sustainable agriculture: a comprehensive review for optimizing food production and environmental conservation. Int J Plant Soil Sci 35(16):417–425

    Article  Google Scholar 

  12. Vasylieva N (2019) Ukrainian agricultural contribution to the world food security: economic problems and prospects. Montenegrin J Econ 14(4):215–224

    Article  Google Scholar 

  13. Barker G (2009) The agricultural revolution in prehistory: why did foragers become farmers? Oxford University Press. https://www.google.co.in/books/edition/The_Agricultural_Revolution_in_Prehistor/-BYUDAAAQBAJ?hl=en

  14. Evenson RE, Gollin D (2003) Assessing the impact of the Green Revolution, 1960 to 2000. Science 300(5620):758–762

    Google Scholar 

  15. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639

    Article  Google Scholar 

  16. Gliessman SR (2014) Agroecology: the ecology of sustainable food systems, 3rd edn. CRC Press. https://doi.org/10.1201/b17881

  17. Pimentel D, Burgess M (2014) An environmental, energetic, and economic comparison of organic and conventional farming systems. Integr Pest Manag: Pest Prob 3:141–166

    Article  Google Scholar 

  18. Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Article  Google Scholar 

  19. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294(5543):843–845

    Article  Google Scholar 

  20. Taiz L (2013) Agriculture, plant physiology, and human population growth: past, present, and future. Theor Exp Plant Physiol 25:167–181

    Google Scholar 

  21. Tian Z, Wang JW, Li J, Han B (2021) Designing future crops: challenges and strategies for sustainable agriculture. Plant J 105(5):1165–1178

    Article  Google Scholar 

  22. Parama VR, Munawery A (2012) Sustainable soil nutrient management. J Indian Inst Sci 92(1):1–16

    Google Scholar 

  23. Havlin JL (2020) Soil: fertility and nutrient management. In: Landscape and land capacity. CRC Press, pp 251–265. eBook ISBN 9780429445552. https://doi.org/10.1201/9780429445552

  24. Briat JF, Gojon A, Plassard C, Rouached H, Lemaire G (2020) Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur J Agron 116:126069

    Article  Google Scholar 

  25. Aulakh MS, Grant CA (2008) Integrated nutrient management for sustainable crop production. The Haworth Press, Taylor and Francis Group, New York. https://doi.org/10.1201/9780367803216

    Book  Google Scholar 

  26. Yu T, Mahe L, Li Y, Wei X, Deng X, Zhang D (2022) Benefits of crop rotation on climate resilience and its prospects in China. Agronomy 12(2):436

    Article  Google Scholar 

  27. Bowles TM, Mooshammer M, Socolar Y, Calderón F, Cavigelli MA, Culman SW, ... Grandy AS (2020) Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2(3):284–293

    Google Scholar 

  28. Shah KK, Modi B, Pandey HP, Subedi A, Aryal G, Pandey M, Shrestha J (2021). https://doi.org/10.1155/2021/8924087

  29. Li Q, Yan J (2020) Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol 21:1–5

    Article  Google Scholar 

  30. Schönhart M, Schmid E, Schneider UA (2011) CropRota–a crop rotation model to support integrated land use assessments. Eur J Agron 34(4):263–277

    Article  Google Scholar 

  31. Kulwal P, Thudi M, Varshney RK (2011) Genomics interventions in crop breeding for sustainable agriculture. Springer. ISBN 978-0-387-89469-0. https://oar.icrisat.org/59/

  32. Poehlman JM, Sleper DA (1995) Methods in plant breeding. Breeding Field Crops, 172–174

    Google Scholar 

  33. Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, ... Varshney RK (2021) Genomic resources in plant breeding for sustainable agriculture. J Plant Physiol 257:153351

    Google Scholar 

  34. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  Google Scholar 

  35. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, ... Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    Google Scholar 

  36. Brodt S, Six J, Feenstra G, Ingels C, Campbell D (2011) Sustainable agriculture. Nat Educ Knowl 3(1)

    Google Scholar 

  37. Yu H, Li J (2021) Short-and long-term challenges in crop breeding. Natl Sci Rev 8(2):nwab002. https://doi.org/10.1093/nsr/nwab002

  38. Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, ... Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Google Scholar 

  39. Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3(1):200–231

    Article  Google Scholar 

  40. Fess TL, Kotcon JB, Benedito VA (2011) Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability 3(10):1742–1772

    Article  Google Scholar 

  41. Wyse DL (1994) New technologies and approaches for weed management in sustainable agriculture systems. Weed Technol 8(2):403–407

    Article  Google Scholar 

  42. Khanh T, Chung I, Tawata S, Xuan T (2007) Allelopathy for weed management in sustainable agriculture. CABI Rev, 17 pp. https://doi.org/10.1079/PAVSNNR20072034 https://doi.org/10.1079/PAVSNNR20072034

  43. Yadollahi P, Abad ARB, Khaje M, Asgharipour MR, Amiri A (2014) Effect of intercropping on weed control in sustainable agriculture. Int J Agric Crop Sci (IJACS) 7(10):683–686

    Google Scholar 

  44. Badhai S, Gupta AK, Maurya SP, Koiri B (2021) Ecological/cultural measures of weed management for sustainable agriculture. J Wastes Biomass Manag (JWBM) 3(2):36–38

    Google Scholar 

  45. Reddy PP (2017) Agro-ecological approaches to pest management for sustainable agriculture. Springer, Singapore, pp 1–339

    Google Scholar 

  46. Riemens M, Sønderskov M, Moonen AC, Storkey J, Kudsk P (2022) An integrated weed management framework: a pan-European perspective. Eur J Agron 133:126443

    Article  Google Scholar 

  47. Sekhar JC, Sandhya S, Vinod KR, Banji D, Sudhakar K, Chaitanya RSNAKK (2012) Plant toxins-useful and harmful effects. Hygeia-J Drugs Med 4(1):79–90

    Google Scholar 

  48. Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J. Fertil. Pestic 6(2):1–2

    Article  Google Scholar 

  49. French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L (2021) Emerging strategies for precision microbiome management in diverse agroecosystems. Nat Plants 7(3):256–267

    Google Scholar 

  50. Qadri M, Short S, Gast K, Hernandez J, Wong ACN (2020) Microbiome innovation in agriculture: development of microbial based tools for insect pest management. Front Sustain Food Syst 4:547751

    Article  Google Scholar 

  51. Bell TH, Hockett KL, Alcalá-Briseño RI, Barbercheck M, Beattie GA, Bruns MA, ... Yergeau E (2019) Manipulating wild and tamed phytobiomes: challenges and opportunities. Phytobiomes J 3(1):3–21

    Google Scholar 

  52. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    Article  Google Scholar 

  53. Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002

    Article  Google Scholar 

  54. Bennett JA, Klironomos J (2019) Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol 222(1):91–96

    Article  Google Scholar 

  55. Sarker A, Ansary MWR, Hossain MN, Islam T (2021) Prospect and challenges for sustainable management of climate change-associated stresses to soil and plant health by beneficial rhizobacteria. Stresses 1(4):200–222

    Article  Google Scholar 

  56. Hu HW, He JZ (2018) Manipulating the soil microbiome for improved nitrogen management. Microbiol Austr 39(1):24–27

    Article  Google Scholar 

  57. Hartman K, van der Heijden MG, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:1–14

    Google Scholar 

  58. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  Google Scholar 

  59. Johnson DL, Ambrose SH, Bassett TJ, Bowen ML, Crummey DE, Isaacson JS, Johnson DN, Lamb P, Saul M, Winter-Nelson AE (1997) Meanings of environmental terms. J Environ Qual 26(3):581–589

    Article  Google Scholar 

  60. Newhouse N (1990) Implications of attitude and behavior research for environmental conservation. J Environ Educ 22(1):26–32

    Article  Google Scholar 

  61. Serote B, Mokgehle S, Du Plooy C, Mpandeli S, Nhamo L, Senyolo G (2021) Factors influencing the adoption of climate-smart irrigation technologies for sustainable crop productivity by smallholder farmers in arid areas of South Africa. Agriculture 11(12):1222

    Article  Google Scholar 

  62. Siderius C, Boonstra H, Munaswamy V, Ramana C, Kabat P, van Ierland E, Hellegers PJGJ (2015) Climate-smart tank irrigation: a multi-year analysis of improved conjunctive water use under high rainfall variability. Agric Water Manag 148:52–62

    Google Scholar 

  63. Hartemink AE (2016) The definition of soil since the early 1800s. Adv Agron 137:73–126

    Article  Google Scholar 

  64. Blanco H, Lal R (2008) Principles of soil conservation and management. ISBN: 978-1-4020-8708-0, e-ISBN: 978-1-4020-8709-7

    Google Scholar 

  65. Degu M, Melese A, Tena W (2019) Effects of soil conservation practice and crop rotation on selected soil physicochemical properties: the case of Dembecha District, Northwestern Ethiopia. Appl Environ Soil Sci. https://doi.org/10.1155/2019/6910879

  66. Wu QM, Zhang JM, Li YY, Zhang Y (2021) Recent advances on the mechanism of beneficial microbial fertilizers in crops. Biotechnol Bull 37(5):221

    Google Scholar 

  67. Habig J, Swanepoel C (2015) Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments 2(3):358–384

    Article  Google Scholar 

  68. Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. http://hdl.handle.net/10986/17388

  69. Reno J (2015) Waste and waste management. Ann Rev Anthropol 44:557–572

    Article  Google Scholar 

  70. Bhatt AK, Bhatia RK, Thakur S, Rana N, Sharma V, Rathour RK (2018) Fuel from waste: a review on scientific solution for waste management and environment conservation. Prospects Alternative Transp Fuels 205–233

    Google Scholar 

  71. Michalak I, Chojnacka K (2014) Effluent biomonitoring, encyclopedia of toxicology, 3rd edn. Academic Press, pp 312–315. ISBN 9780123864550. https://doi.org/10.1016/B978-0-12-386454-3.01008-3

  72. Jadhav UU, Hocheng H (2012) A review of recovery of metals from industrial waste. J Achiev Mater Manuf Eng 54(2):159–167

    Google Scholar 

  73. Nanda S, Berruti F (2021) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett 19:1433–1456

    Article  Google Scholar 

  74. Tchobanoglous G, Kreith F (2002) Handbook of solid waste management. McGraw-Hill Education. ISBN: 9780071356237

    Google Scholar 

  75. Sahu OP, Chaudhari PK (2013) Review on chemical treatment of industrial waste water. J Appl Sci Environ Manag 17(2):241–257

    Google Scholar 

  76. Cheremisinoff NP (2003) Handbook of solid waste management and waste minimization technologies. Butterworth-Heinemann. ISBN 0-7506-7507-1

    Google Scholar 

  77. Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manage 52(2):1280–1287

    Article  Google Scholar 

  78. Eggleton T (2013) A short introduction to climate change. Cambridge University Press, p 52. ISBN 9781107618763

    Google Scholar 

  79. Lal R (2008) Carbon sequestration. Philos Trans Royal Soc B: Biol Sci 363(1492):815–830

    Article  Google Scholar 

  80. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, ... Zhou B (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–32. https://doi.org/10.1017/9781009157896.001

  81. Zhang D, Song J (2014) Mechanisms for geological carbon sequestration. Procedia IUTAm 10:319–327

    Article  Google Scholar 

  82. Lehmann J (2009) Biological carbon sequestration must and can be a win-win approach. Clim Change 97(3):459–463

    Article  Google Scholar 

  83. Ornstein L (2009) Replacing coal with wood: sustainable, eco-neutral, conservation harvest of natural tree-fall in old-growth forests: an editorial essay. Clim Change. https://doi.org/10.1007/s10584-009-9625-z

    Article  Google Scholar 

  84. Reicosky DC (2008) Carbon sequestration and environmental benefits from no-till systems. No-till farming systems, no 3. Special publication, pp 43–58

    Google Scholar 

  85. Farrelly DJ, Everard CD, Fagan CC, McDonnell KP (2013) Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sustain Energy Rev 21:712–727

    Article  Google Scholar 

  86. Mall RK, Gupta A, Singh R, Singh RS, Rathore LS (2006) Water resources and climate change: an Indian perspective. Curr Sci 1610–1626

    Google Scholar 

  87. Flörke M, Schneider C, McDonald RI (2018) Water competition between cities and agriculture driven by climate change and urban growth. Nat Sustain 1(1):51–58

    Google Scholar 

  88. Das J, Jha S, Goyal MK, Surampalli RY (2020) Challenges of sustainability in agricultural management. Sustain: Fundam Appl 339–356

    Google Scholar 

  89. Riadi B (2018) Strategy to maintain food security in the area of flood hazard in Karawang regency. In: IOP conference series: earth and environmental science, vol 165, no 1. IOP Publishing, p 012029

    Google Scholar 

  90. Jayne TS, Chamberlin J, Headey DD (2014) Land pressures, the evolution of farming systems, and development strategies in Africa: a synthesis. Food Policy 48:1–17

    Article  Google Scholar 

  91. Putri RF, Wibirama S, Sukamdi, Giyarsih SR (2018) Population condition analysis of Jakarta land deformation area. In: IOP conference series: earth and environmental science. IOP Publishing, vol 148, p 012007

    Google Scholar 

  92. Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11(1):19–30

    Article  Google Scholar 

  93. Cline WR (2009) Global warming and agriculture: new country estimates show developing countries face declines in agricultural productivity (No. id: 2221). https://ideas.repec.org/p/ess/wpaper/id2221.html

  94. Hingane LS, Rupa Kumar K, Ramana Murty BV (1985) Long-term trends of surface air temperature in India. J Climatol 5(5):521–528

    Article  Google Scholar 

  95. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35(18)

    Google Scholar 

  96. Vittal H, Karmakar S, Ghosh S (2013) Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950. Geophys Res Lett 40(12):3253–3258

    Article  Google Scholar 

  97. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  Google Scholar 

  98. Kumar R, Gautam HR (2014) Climate change and its impact on agricultural productivity in India. J Climatol Weat Forecast 2

    Google Scholar 

  99. Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17(4):319–464

    Article  Google Scholar 

  100. Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agr Ecosyst Environ 104(1):185–228

    Article  Google Scholar 

  101. Bonell M, Bruijnzeel LA (eds) (2004) Forests, water and people in the humid tropics: past, present and future hydrological research for integrated land and water management. Cambridge University Press. ISBN 052182953

    Google Scholar 

  102. Chomitz KM, Griffiths C (1996) Deforestation, shifting cultivation, and tree crops in Indonesia: nationwide patterns of smallholder agriculture at the forest frontier. Research Project on Social and Environmental Consequences of Growth-Oriented Policies, Working Paper, 4. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=842515eafcac7dbb87730119d3c79253971ac8db

  103. Mangave HR (2004) A study of Elephant population and its habitats in the northern West Bengal, North East India. M.Sc. thesis, Bharathidasan University. Unpublished

    Google Scholar 

  104. Hansen CP (1997) Making available information on the conservation and utilization of forest genetic resources. The FAO Worldwide Information System on Forest genetic resources. ISSN 1020-4431. https://www.fao.org/3/w3354e/W3354E27.htm

  105. Schmink M, Wood CH (1992) Contested frontiers in Amazonia. Columbia University Press. ISBN 0-231-07660-6

    Google Scholar 

  106. Friedrich MJ (2018) Global hunger on the rise as climate extremes increase. JAMA 320(19):1969–1969

    Google Scholar 

  107. Wan X, Cui J, Jiang X, Zhang J, Yang Y, Zheng T (2018) Smartphone based hemispherical photography for canopy structure measurement. In: 2017 international conference on optical instruments and technology: optoelectronic measurement technology and systems, vol 10621. SPIE, pp 200–205

    Google Scholar 

  108. Frommberger L, Schmid F, Cai C (2013) Micro-mapping with smartphones for monitoring agricultural development. In: Proceedings of the 3rd ACM symposium on computing for development, pp 1–2. https://doi.org/10.1145/2442882.2442934

  109. Andriamandroso ALH, Lebeau F, Beckers Y, Froidmont E, Dufrasne I, Heinesch B, ... Bindelle J (2017) Development of an open-source algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass intake and ruminating behaviours. Comput Electron Agric 139:126–137

    Google Scholar 

  110. Villa-Henriksen A, Edwards GT, Pesonen LA, Green O, Sørensen CAG (2020) Internet of Things in arable farming: implementation, applications, challenges and potential. Biosys Eng 191:60–84

    Article  Google Scholar 

  111. Sylvester GE (2018) E-agriculture in action: drones for agriculture. Food and Agriculture Organization of the United Nations and International Telecommunication Union

    Google Scholar 

  112. Cravero A, Pardo S, Sepúlveda S, Muñoz L (2022) Challenges to use machine learning in agricultural big data: a systematic literature review. Agronomy 12(3):748

    Article  Google Scholar 

  113. Enescu D, Chicco G, Porumb R, Seritan G (2020) Thermal energy storage for grid applications: current status and emerging trends. Energies 13(2):340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyani Chepuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kodaparthi, A. et al. (2024). Environmental Conservation for Sustainable Agriculture. In: Aransiola, S.A., Babaniyi, B.R., Aransiola, A.B., Maddela, N.R. (eds) Prospects for Soil Regeneration and Its Impact on Environmental Protection . Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53270-2_2

Download citation

Publish with us

Policies and ethics