Skip to main content

Modeling-Based Science Education

  • Chapter
  • First Online:
Rethinking Science Education in Latin-America

Abstract

This chapter proposes model-based science teaching as a promising approach for science education in Latin America. The discussion is organized around two main areas of this line of research: organizing the curriculum around science school models and designing and implementing teaching and learning sequences for school classrooms. This chapter presents examples of research conducted in Latin America. It highlights the consensus that has been reached and the contributions made to the global academic discussion. The chapter also identifies areas where further research is needed to address the challenges of science education in the Global South. The aim is to inspire researchers, teacher educators, and teachers to promote science education that contributes to citizenship education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acher, A., Arcà, M., & Sanmartí, N. (2007). Modelling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398–418. https://doi.org/10.1002/sce

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2012). Some key features of scientific models relevant to chemical education. Chemical Education, 23(Suppl. 2), 248–256.

    Google Scholar 

  • Adúriz-Bravo, A. (2013). A ‘semantic’ view of scientific models for science education. Science & Education, 22(7), 1593–1611.

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2020). Contributions to the nature of science. Scientific investigation as inquiry, modelling, and argumentation. In C. El-Hani, M. Pietrocola, E. Mortimer, & M. Otero (Eds.), Science education research in Latin America (Cultural and historical perspectives on science education) (pp. 394–425). Brill | Sense.

    Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). Un modelo de modelo científico para la enseñanza de las ciencias naturales. Revista electrónica de investigación en educación en ciencias, (ESP), 40–49.

    Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009a). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18(9), 1177–1192.

    Article  Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009b). A model of scientific model for the teaching of natural sciences. Electronic Journal of Research in Science Education, 4, 40–49.

    Google Scholar 

  • Adúriz-Bravo, A., Bonan, M., Acosta, P., & Deivi, J. (2021). Scientific, didactical and analogical models in the teaching of natural sciences. In M. Quintanilla & A. Adúriz-Bravo (Eds.), Science teaching for a new teaching culture: Challenges and opportunities (pp. 83–102). Ediciones Universidad Católica de Chile.

    Google Scholar 

  • Aliberas, J., Gutiérrez, R., & Izquierdo, M. (2017). Introduction to a method for conducting and analyzing didactical dialogues based on the evaluation of mental models. Science Education. Journal of Research and Didactical Experiences, 35(2), 7–28. https://doi.org/10.5565/rev/ensciencias.2028

    Article  Google Scholar 

  • Ariza, Y., Lorenzano, P., & Adúriz-Bravo, A. (2016). Meta-theoretical contributions to the constitution of a model-based didactics of science. Science & Education, 25(7), 747–773.

    Article  Google Scholar 

  • Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modelling: The MoDeLS fifth-grade approach and findings. In Models and modelling (pp. 195–218). Springer.

    Chapter  Google Scholar 

  • Bahamonde, N., & Gómez Galindo, A. A. (2016). Characterization of human digestion models based on their representations and analysis of their evolution in a group of teachers and academic assistants. Science Education, 34(1), 129–147. https://doi.org/10.5565/rev/ensciencias.1748

    Article  Google Scholar 

  • Caamaño, A. (2006). Retos del currículum de química en la educación secundaria. La selección y contextualización de los contenidos de química en los currículos de Inglaterra, Portugal, Francia y España. Educación Química, 17(2), 195–208.

    Google Scholar 

  • Caamaño, A. (2011). Contextualization, inquiry and modelling. Three approaches to learning scientific competence in chemistry classes. Classroom of Educational Innovation, 207, 17–21.

    Google Scholar 

  • Caamaño, A. (2018). Enseñar química en contexto: un recorrido por los proyectos de química en contexto desde la década de los 80 hasta la actualidad. Educación química, 29(1), 21–54.

    Article  Google Scholar 

  • Chiu, M. H., & Lin, J. W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1–11.

    Article  Google Scholar 

  • Chu, S. L., Deuermeyer, E., & Quek, F. (2018). Supporting scientific modeling through curriculum-based making in elementary school science classes. International Journal of Child-Computer Interaction, 16, 1–8.

    Article  Google Scholar 

  • Clement, J., & Rea-Ramirez, M. (2009). Model Based Learning and Instruction in Science. Springer.

    Google Scholar 

  • Contreras, S., & González, A. (2014). La selección de contenidos conceptuales en los programas de estudio de Química y Ciencias Naturales chilenos: análisis de los niveles macroscópico, microscópico y simbólico. Educación química, 25(2), 97–103.

    Article  Google Scholar 

  • Cortés-Morales, A. (2020). The construction of the chemical change model in secondary education: Analysis of a teacher training course on the science project, 12–15.

    Google Scholar 

  • Couso, D. (2020). Learning school science involves building increasingly sophisticated models of world phenomena. In D. Couso, M. R. Jiménez-Liso, C. Refojo, & J. A. Sacristán (Coords.), Teaching Science with Science (pp. 63–74). FECYT & Lilly Foundation/Penguin Random House. https://www.fecyt.es/es/publicacion/ensenando-ciencia-con-ciencia

  • Couso D., & Adúriz-Bravo, A. (2016). Development of competency teaching units in the professional training of science teachers. In G. A. Perafán Echeverri, E. Badillo Jiménez, & A. Adúriz-Bravo (Coord.), Knowledge and emotions of teachers contributions to their development and didactic implications (pp. 265–283) Editorial Aula de Humanidades.

    Google Scholar 

  • Criado, A. M., Cruz-Guzmán, M., García-Carmona, A., & Cañal, P. (2014). How to improve the national science curriculum of Spanish primary education. Suggestions from a comparative analysis of goals and content with England and the USA. Enseñanza de las Ciencias, 32(3), 249–266.

    Google Scholar 

  • Erduran, S., Kaya, E., & Cetin, P. S. (2017). Consolidation of conceptual change, argumentation, models and explanations: Why it matters for science education. In Converging perspectives on conceptual change (pp. 151–162). Routledge.

    Chapter  Google Scholar 

  • Fensham, P. (2016). The future curriculum for school science: What can be learnt from the past? Research in Science Education, 46(2), 165–185.

    Article  Google Scholar 

  • Galagovsky, L., & Adúriz-Bravo, A. (2001). Models and analogies in the teaching of natural sciences. The concept of analog didactical model. Science Education, 19(2), 231–242.

    Google Scholar 

  • Garrido Espeja, A. (2016). Modelització i models en la formació inicial de mestres de primària desde la perspectiva de la pràctica científica. Universitat Autònoma de Barcelona. https://ddd.uab.cat/pub/tesis/2016/hdl_10803_399837/age1de1.pdf

    Google Scholar 

  • Garrido, N., López, V., & Pintó, R. (2019). Analysis of the learning of electrostatic concepts in pre-service physics teachers. Journal of Physics: Conference Series, 1287(1), 012034. IOP Publishing.

    Google Scholar 

  • Garrido, A., Soto, M., & Couso, D. (2022). Initial training of science teachers: Possible contributions and tensions of modelling. Science Education. Journal of Research and Didactic Experiences, 40(1), 87–105. https://doi.org/10.5565/rev/ensciencias.3286

    Article  Google Scholar 

  • Gelfert, A. (2017). The ontology of models. In L. Magnani & T. Bertolotti (Eds.), Springer handbook of model-based science (pp. 5–24). Springer.

    Chapter  Google Scholar 

  • Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.

    Article  Google Scholar 

  • Gilbert, J. K. (2013). Representations and models. In R. Tytler, V. Prain, P. Hubber, & B. Waldrip (Eds.), Constructing representations to learn in science (pp. 193–198). Sense Publishers.

    Chapter  Google Scholar 

  • Gilbert, J. K., & Justi, R. (2016). Models of modelling. In Modelling-based teaching in science education (pp. 17–40). Springer.

    Google Scholar 

  • Gómez, A. A., Solsona, N., & Pujol, R. M. (2007). Fundamentación teórica y diseño de una unidad didáctica para la enseñanza del modelo ser vivo en la escuela primaria. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 325–340.

    Google Scholar 

  • González, A., Lizana, P., Pino, S., Miller, B., & Merino, C. (2020). Augmented reality-based learning improves visual representation and comprehension of the cardiac anatomy and function in undergraduate students. Advances in Physiology Education, 44(3), 314–322. https://doi.org/10.1152/advan.00137.2019

    Article  Google Scholar 

  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1–11.

    Article  Google Scholar 

  • Halloun, I. (2016). Mediated modelling in science education. Science & Education, 16(6–7), 1–32. https://doi.org/10.1007/s11191-006-9004-3

    Article  Google Scholar 

  • Harlen, W. (2010). Principios y grandes ideas de la educación científica.

    Google Scholar 

  • Hernández, M. I., Couso, D., & y Pintó, R. (2015). Analyzing students’ learning progressions Throug-hout a teaching sequence on acoustic properties of materials with a model-based inquiry Ap-proach. Journal of Science Education and Technology, 24(2–3), 356–377.

    Article  Google Scholar 

  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Brill.

    Book  Google Scholar 

  • Holme, T., Luxford, C., & Murphy, K. (2015). Updating the general chemistry anchoring concepts content map. Journal of Chemical Education, 92(6), 1115–1116.

    Article  Google Scholar 

  • Izquierdo, M. (2007). Teaching science, a new science. Social Science Education, 6, 125–138.

    Google Scholar 

  • Izquierdo, M., Sanmartí, N., & Espinet, M. (1999). Foundation and design of school practices of experimental sciences. Science Education: Journal of Research and Didactic Experiences, 17(1), 45–59.

    Google Scholar 

  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science and Education, 12, 27–43.

    Article  Google Scholar 

  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2021). Giere’s contributions to the reflection on science education. Artifacts. Journal of Science and Technology Studies, 10(1), 75–87. https://doi.org/10.14201/art20211017587

    Article  Google Scholar 

  • Izquierdo-Aymerich, M., & Aliberas, J. (2004). Think, write and act to the class of sciences. Per un ensenyament de les ciències racional i raonable. Servei Publicacions, UAB.

    Google Scholar 

  • Justi, R. (2006). Modelling-based science education. Science Education. Journal of Research and Didactic Experiences, 24(2), 173–184. https://doi.org/10.5565/rev/ensciencias.3798

    Article  Google Scholar 

  • Khan, S. (2011). What’s missing in model-based teaching. Journal of Science Teacher Education, 22(6), 535–560. https://doi.org/10.1007/s10972-011-9248-x

    Article  Google Scholar 

  • Krajcik, J., & Mun, K. (2014). Promises and challenges of using learning technologies to promote student learning of science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, volume II (1st ed.). Routledge. https://doi.org/10.4324/9780203097267

    Chapter  Google Scholar 

  • Lizana, P., Merino, C., Bassaber, A., Henríquez, R., Vega-Fernández, G., & Binvignat, O. (2015). Learning human anatomy using three-dimensional models made from real-scale bone pieces: Experience with the knee joint among pre-service biology teachers. International Journal of Morphology, 33(4), 1299–1306. https://doi.org/10.4067/S0717-95022015000400018

    Article  Google Scholar 

  • López, V., & Pintó, R. (2012). Ensenyar energia a secundària. Physics Resources, 1971, 1–9.

    Google Scholar 

  • López-Cortés, F., Ravanal Moreno, E., Palma Rojas, C., & Merino, C. (2021). Levels of external representation of secondary school students about mitotic cell division: An experience with augmented reality. Pixel-Bit. Media and Education Magazine, 62, 7–37. https://doi.org/10.12795/pixelbit.84491

    Article  Google Scholar 

  • López-Mota, Á., & Moreno-Arcuri, G. (2014). Theoretical support and methodological description of the process of obtaining design and validation criteria for didactic sequences based on models: The case of the fermentation phenomenon. Biography, 7(13), 109–126.

    Google Scholar 

  • Machado, J., & Braga, M. (2018). Secondary students’ modelling conceptualisation in situations related to particle dynamics: A clinical perspective. International Journal of Science Education, 40(13), 1606–1628.

    Article  Google Scholar 

  • Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603–630. https://doi.org/10.1080/09500690802538045

    Article  Google Scholar 

  • Marzábal, A., Delgado, V., Moreira, P., Merino, C., Cabello, V. M., Manrique, F., et al. (2021). The matter, chemical reaction and thermodynamic models as structuring cores of a citizenship-oriented school chemistry. Educación química, 32(4), 109–126.

    Google Scholar 

  • Matthews, M. R. (2014). Science teaching: The contribution of history and philosophy of science. Routledge.

    Book  Google Scholar 

  • Merino, C., & Izquierdo, M. (2011). Contributions to modelling according to chemical change. Chemistry Education, 22(3), 212–223.

    Google Scholar 

  • Merino, C., Pino, C., Meyer, E., Garrido, J. M., & Gallardo, F. (2015). Augmented reality for the design of teaching-learning sequences in chemistry. Chemical Education, 26(2), 94–99. https://doi.org/10.1016/j.eq.2015.04.004

    Article  Google Scholar 

  • Merino, C., Moreira, P., & Marzábal, A. (2019). Systemic analysis of the evolution of the components of the students’ electrical model. Didacticae, 5, 26–42. https://doi.org/10.1344/did.2019.5.26-42

    Article  Google Scholar 

  • Merino, C., Marzábal, A., Quiroz, W., Pino, S., López, F., Carrasco, X., & Miller, B. (2022a). Use of augmented reality in chromatography learning: How is this dynamic visual artifact fostering the visualization capacities of chemistry undergraduate students? Frontiers in Education, 7, 932713. https://doi.org/10.3389/FEDUC.2022.932713

    Article  Google Scholar 

  • Merino, C., Iturbe-Saric, C., Miller, B., Parent, C., Phillips, J., Pino, S., Garrido, J. M., Arenas, A., & Zamora, J. (2022b). Snailed it! Inside the shell: Using augmented reality as a window into biodiversity. Frontiers in Education, 7, 933436. https://doi.org/10.3389/feduc.2022.933436

    Article  Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. MIT.

    Book  Google Scholar 

  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188. https://doi.org/10.1002/tea.21061

    Article  Google Scholar 

  • Nicolaou, C. T., & Constantinou, C. P. (2014). Assessment of the modelling competence: A systematic review and synthesis of empirical research. Educational Research Review, 13, 52–73.

    Article  Google Scholar 

  • NRC. (2013). Next generation science standards: For states, by states. National Academies Press.

    Google Scholar 

  • Occelli, M., Pomar, S., & Gómez, A. (2022). Modelling and construction of external representations of protein synthesis: A design studio in High School. Didactics of Experimental and Social Sciences, 42, 119–136.

    Google Scholar 

  • Oliva, J. (2019). Different definitions for the idea of modelling in science education. Science Education, 37(2), 5–24. https://doi.org/10.5565/rev/ensciencias.2648

    Article  Google Scholar 

  • Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196. https://doi.org/10.1007/s10972-014-9384-1

    Article  Google Scholar 

  • Pérez, G. M., Galindo, A. A. G., & Galli, L. G. (2018). Enseñanza de la evolución: fundamentos para el diseño de una propuesta didáctica basada en la modelización y la metacognición sobre los obstáculos epistemológicos. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(2), 210101–210113.

    Article  Google Scholar 

  • Pintó, R., Couso, D., & Gutierrez, R. (2005). Using research on teachers’ transformations of innovations to inform teacher education. The case of energy degradation. Science Education, 89(1), 38–55. https://doi.org/10.1002/sce.20042

  • Quílez Pardo, J. (2005). Bases para una propuesta de tratamiento de las interacciones CTS dentro de un currículum cerrado de química. Educación química, 16(3), 416–436.

    Article  Google Scholar 

  • Raviolo, A., Garritz, A., & Sosa, P. (2011). Sustancia y reacción química como conceptos centrales en química. Una discusión conceptual, histórica y didáctica. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 8(3), 240–254.

    Google Scholar 

  • Rodriguez-Pineda, D. P., & Faustinos Garrido, M. (2021). Modelling of the origin of earthquakes from the School scientific model of arrival of plate tectonics. Biography. https://revistas.pedagogica.edu.co/index.php/bio-grafia/article/view/15677

  • Salinas, I., Covitt, B. A., & Gunckel, K. L. (2013). Substances in water: Learning progressions to design curricular interventions. Chemistry Education, 24(4), 391–398.

    Google Scholar 

  • Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Achér, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modelling: Making scientific modelling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311

    Article  Google Scholar 

  • Scott, P., Asoko, H., & Leach, J. (2007). Students conceptions and conceptual learning in science. In S. Abell & N. Lederman (Eds.), Handbook of Research on Science Education (pp. 31–56). Lawrence Elrbaum Associates Publishers.

    Google Scholar 

  • Sosa, P., & El Méndez, N. (2011). problema del lenguaje en la enseñanza de los conceptos compuesto, elemento y mezcla. Educació Química, 8, 44–51.

    Google Scholar 

  • Soto, M., Couso, D., López, V., & Hernández, M. I. (2017). Promoting the appropriation of the energy model in 4or ESO students through didactic design. Apex. Journal of Science Education, 1(1), 90–106. https://doi.org/10.17979/arec.2017.1.1.2003

    Article  Google Scholar 

  • Soto, M., Couso, D., & López, V. (2019). A teaching-learning proposal focused on the analysis of the energy path “step by step”. Eureka Journal on Science Teaching and Dissemination, 16(1), 1202–1201. https://doi.org/10.25267/Rev

    Article  Google Scholar 

  • Soto, M., Couso, D., & Pintó, R. (2021). Modelling in pre-service secondary school teacher education: Developing a school scientific model of energy. Journal of Physics: Conference Series, 1929(1), 012087). IOP Publishing. https://doi.org/10.1088/1742-6596/1929/1/012087

    Article  Google Scholar 

  • Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of “structure of matter”. International Journal of Science Education, 31(15), 2123–2136.

    Article  Google Scholar 

  • Talanquer, V. (2013). When atoms want. Journal of Chemical Education, 90(11), 1419–1424.

    Article  Google Scholar 

  • Talanquer, V. (2016). Central ideas in chemistry: An alternative perspective. Journal of Chemical Education, 93(1), 3–8.

    Article  Google Scholar 

  • Tamayo, O., & Sanmartí, N. (2007). High-school students’ conceptual evolution of the respiration concept from the perspective of Giere’s cognitive science model. International Journal of Science Education, 29(2), 215–248. https://doi.org/10.1080/09500690600620854

    Article  Google Scholar 

  • Thagard, P. (2010). How brains make mental models. In L. Magnani, W. Carnielli, & C. Pizzi (Eds.), Model-based reasoning in science and technology. Studies in computational intelligence (pp. 447–461). Springer.

    Google Scholar 

  • Vergara, C. (2022). Analysis of teacher discourse in modelling activities on forces and movement. Universitat Autònoma de Barcelona.

    Google Scholar 

  • Vo, T., Forbes, C., Zangori, L., & Schwarz, C. V. (2019). Longitudinal investigation of primary inservice teachers’ modelling the hydrological phenomena. International Journal of Science Education, 41(18), 2788–2807. https://doi.org/10.1080/09500693.2019.1698786

    Article  Google Scholar 

  • Vosniadou, S. (2002). Mental models in conceptual development. In L. Magnani & N. Nersessian (Eds.), Model-based reasoning. Springer.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Agency for Research and Development (ANID) through FONDECYT Programs 1180619, 1190843, and 1211092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainoa Marzabal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marzabal, A., Merino, C., Soto, M., Cortés, A. (2024). Modeling-Based Science Education. In: Marzabal, A., Merino, C. (eds) Rethinking Science Education in Latin-America. Contemporary Trends and Issues in Science Education, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-52830-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52830-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52829-3

  • Online ISBN: 978-3-031-52830-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics