Skip to main content

Electrical and Electromagnetic Prospecting for the Characterization of Municipal Waste Landfills: A Review

  • Chapter
  • First Online:
Technical Landfills and Waste Management

Part of the book series: Springer Water ((SPWA))

  • 103 Accesses

Abstract

In this chapter, we review the main results of electrical and electromagnetic prospecting applied to the characterization and monitoring of municipal waste landfills in the last decade. Among all the geophysical surveys, these methods are the most used for subsurface investigations of landfills since they provide a cost-effective approach that allows for detailed and non-invasive imaging of the subsurface in terms of the electrical properties, down to depths which generally vary from a few tens of centimeters to several tens of meters. Nevertheless, the indirect geophysical mapping needs the direct even if punctual information from boreholes and wells for an accurate reconstruction of the contaminated zones. Electrical and electromagnetic methods are used for multiple purposes that include mapping landfill boundaries, measuring waste volume and composition, as well as identifying and tracking leachate plumes. In particular, electrical methods are widely used for leachate detection (both inside and outside the landfill) and for the geometrical reconstruction of the landfill using electrical conductivity and chargeability as the main proxies. Low-frequency electromagnetic methods are mostly used for a hydrogeological characterization and extensive screening of the high-conductive areas associated to the leachate accumulation. These methods have lower resolution compared to the electrical techniques but often allow greater depth of investigation. High-frequency electromagnetic surveys are instead mainly focused on the shallow part of the landfill for detection of defects on the covering liner and characterization of the covering layer. We discuss recent results related to the topic providing updated references in relation to the specific applications and emphasizing the importance of site-specific validation through direct information. At last, a special focus is given to novel trends, emerging techniques and data integration by machine learning-based approaches for mapping and monitoring of municipal solid waste landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrahman A, Nawawi M, Saad R, Abu-Rizaiza AS, Yusoff MS, Khalil AE, Ishola KS (2016) Characterization of active and closed landfill sites using 2D resistivity/IP imaging: case studies in Penang, Malaysia. Environ Earth Sci 75(4):347

    Article  Google Scholar 

  • Adabanija MA (2023) Spatio-temporal monitoring of leachates dispersion beneath a solid wastes dump in basement complex of southwestern Nigeria. J Appl Geophys 210:104953

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Article  Google Scholar 

  • Audebert M, Clément R, Grossin-Debattista J, Günther T, Touze-Foltz N, Moreau S (2014a) Influence of the geomembrane on time-lapse ERT measurements for leachate injection monitoring. Waste Manage 34(4):780–790

    Article  CAS  Google Scholar 

  • Audebert M, Clément R, Touze-Foltz N, Günther T, Moreau S, Duquennoi C (2014b) Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS). J Appl Geophys 111:320–333

    Article  Google Scholar 

  • Audebert M, Clément R, Moreau S, Duquennoi C, Loisel S, Touze-Foltz N (2016a) Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling–Part I: Analysis of infiltration shape on two different waste deposit cells. Waste Manage 55:165–175

    Article  CAS  Google Scholar 

  • Audebert M, Oxarango L, Duquennoi C, Touze-Foltz N, Forquet N, Clément R (2016b) Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling–Part II: constraint methodology of hydrodynamic models. Waste Manage 55:176–190

    Article  CAS  Google Scholar 

  • Baawain MS, Al-Futaisi AM, Ebrahimi A, Omidvarborna H (2018) Characterizing leachate contamination in a landfill site using Time Domain Electromagnetic (TDEM) imaging. J Appl Geophys 151:73–81

    Article  Google Scholar 

  • Balia R (2018) Old municipal and industrial waste landfills: some examples of possible contribution of geophysical survey techniques for their assessment before reclamation. Detritus 1:110–115

    Google Scholar 

  • Bellezoni RA, Iwai CK, Elis VR, da Silva Paganini W, Hamada J (2014) Small-scale landfills: impacts on groundwater and soil. Environ Earth Sci 71:2429–2439

    Article  CAS  Google Scholar 

  • Binley A, Slater L (2020) Resistivity and induced polarization: theory and applications to the near-surface earth. Cambridge University Press

    Google Scholar 

  • Carpenter PJ, Reddy KR (2017). Geophysical Imaging of Landfill Interiors: Examples from Northern Illinois, USA. Springer, Singapore, 1–11.

    Google Scholar 

  • Cınar H, Altundaş S, Ersoy E, Bak K, Bayrak N (2016) Application of two geophysical methods to characterize a former waste disposal site of the Trabzon-Moloz district in Turkey. Environ Earth Sci 75:1–16

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and adsorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Google Scholar 

  • Costanzo-Alvarez V, Aldana M, Trigo-Ferre R, Jacome M, Galatro D, Izarra C, Amon CH (2022) Combining a geoelectrical survey with integrated groundwater quality data to map the spatial distribution and temporal variations of a leachate plume in a closed landfill (Southern Ontario, Canada). Environ Earth Sci 81(20):498

    Article  CAS  Google Scholar 

  • Dawrea A, Zytner RG, Donald J (2021) Enhanced GPR data interpretation to estimate in situ water saturation in a landfill. Waste Manage 120:175–182

    Article  CAS  Google Scholar 

  • De Carlo L, Perri MT, Caputo MC, Deiana R, Vurro M, Cassiani G (2013) Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method. J Appl Geophys 98:1–10

    Article  Google Scholar 

  • De Donno G, Cardarelli E (2017a) VEMI: a flexible interface for 3D tomographic inversion of time-and frequency-domain electrical data in EIDORS. Near Surface Geophys 15(1):43–58

    Article  Google Scholar 

  • De Donno G, Cardarelli E (2017b) Tomographic inversion of time-domain resistivity and chargeability data for the investigation of landfills using a priori information. Waste Manage 59:302–315

    Article  Google Scholar 

  • Deidda GP, De Carlo L, Caputo MC, Cassiani G (2022) Frequency domain electromagnetic induction imaging: an effective method to see inside a capped landfill. Waste Manage 144:29–40

    Article  Google Scholar 

  • Di Maio R, Fais S, Ligas P, Piegari E, Raga R, Cossu R (2018) 3D geophysical imaging for site-specific characterization plan of an old landfill. Waste Manage 76:629–642

    Article  Google Scholar 

  • Dumont G, Pilawski T, Dzaomuho-lenieregue P, Hiligsmann S, Delvigne F, Thonart P, Robert T, Nguyen F, Hermans T (2016) Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill. Waste Manage 55:129–140

    Article  Google Scholar 

  • Dumont G, Robert T, Mark N, Nguyen F (2017) Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. J Appl Geophys 145:74–83

    Article  Google Scholar 

  • Dumont G, Pilawski T, Hermans T, Nguyen F, Garré S (2018a) The effect of initial water distribution and spatial resolution on the interpretation of ERT monitoring of water infiltration in a landfill cover. Hydrol Earth Sys Sci Discussions:1–26

    Google Scholar 

  • Dumont G, Robert T, Nguyen F (2018b) Electrical resistivity tomography and distributed temperature sensing monitoring to assess the efficiency of horizontal recirculation drains on retrofit bioreactor landfills. Geophysics 83(2):B13–B23

    Article  Google Scholar 

  • Feng SJ, Gao KW, Chen YX, Li Y, Zhang LM, Chen HX (2017) Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manage 63:354–365

    Article  CAS  Google Scholar 

  • Feng SJ, Zhao Y, Zhang XL, Bai ZB (2020) Leachate leakage investigation, assessment and engineering countermeasures for tunneling underneath a MSW landfill. Eng Geol 265:105447

    Article  Google Scholar 

  • Fiandaca G, Auken E, Christiansen AV, Gazoty A (2012) Time-domain-induced polarization: full-decay forward modeling and 1D laterally constrained inversion of Cole-Cole parameters. Geophysics 77(3):E213–E225

    Article  Google Scholar 

  • Fiandaca G, Ramm J, Binley A, Gazoty A, Christiansen AV, Auken E (2013) Resolving spectral information from time domain induced polarization data through 2-D inversion. Geophys J Int 192(2):631–646

    Article  Google Scholar 

  • Flores-Orozco A, Gallistl J, Steiner M, Brandstätter C, Fellner J (2020) Mapping biogeochemically active zones in landfills with induced polarization imaging: the Heferlbach landfill. Waste Manage 107:121–132

    Article  CAS  Google Scholar 

  • Gazoty A, Fiandaca G, Pedersen J, Auken E, Christiansen AV (2012a) Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study. Near Surface Geophys 10(6):575–586

    Article  Google Scholar 

  • Gazoty A, Fiandaca G, Pedersen J, Auken E, Christiansen AV, Pedersen JK (2012b) Application of time domain induced polarization to the mapping of lithotypes in a landfill site. Hydrol Earth Syst Sci 16(6):1793–1804

    Article  Google Scholar 

  • Genelle F, Sirieix C, Riss J, Naudet V, Dabas M, Bégassat P (2014) Detection of landfill cover damage using geophysical methods. Near Surface Geophysics 12(5):599–612

    Article  Google Scholar 

  • Godio A, Naldi M (2009) Integration of electrical and electromagnetic investigation for contaminated site. Am J Environ Sci 5:562–569

    Article  Google Scholar 

  • Helene LPI, Moreira CA, Bovi RC (2020) Identification of leachate infiltration and its flow pathway in landfill by means of electrical resistivity tomography (ERT). Environ Monit Assess 192:1–10

    Article  Google Scholar 

  • Høyer AS, Klint KES, Fiandaca G, Maurya PK, Christiansen AV, Balbarini N, Bjerg PL, Hansen TB, Møller I (2019) Development of a high-resolution 3D geological model for landfill leachate risk assessment. Eng Geol 249:45–59

    Article  Google Scholar 

  • Hu J, Wu XW, Ke H, Xu XB, Lan JW, Zhan LT (2019) Application of electrical resistivity tomography to monitor the dewatering of vertical and horizontal wells in municipal solid waste landfills. Eng Geol 254:1–12

    Article  Google Scholar 

  • Ibraheem IM, Tezkan B, Bergers R (2021) Integrated interpretation of magnetic and ERT data to characterize a landfill in the north-west of Cologne, Germany. Pure Appl Geophys 178(6):2127–2148

    Article  Google Scholar 

  • Isunza-Manrique I, Caterina D, Nguyen F, Hermans T (2023) Quantitative interpretation of geoelectric inverted data with a robust probabilistic approach. Geophysics 88(3):B73–B88

    Article  Google Scholar 

  • Jacome M, Costanzo-Alvarez V, Aldana M, Patraskovic P, Drielsma C, Galatro D, Amon C (2021) A methodology to characterize a sanitary landfill combining, through a numerical approach, a geoelectrical survey with methane point-source concentrations. Environ Technol Innov 21:101225

    Article  CAS  Google Scholar 

  • Juarez MB, Mondelli G, Giacheti HL (2023) An overview of in situ testing and geophysical methods to investigate municipal solid waste landfills. Environ Sci Pollut Res 30(9):24779–24789

    Article  CAS  Google Scholar 

  • Kondracka M, Stan-Kłeczek I, Sitek S, Ignatiuk D (2021) Evaluation of geophysical methods for characterizing industrial and municipal waste dumps. Waste Manage 125:27–39

    Article  Google Scholar 

  • Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  • Ma P, Ke H, Lan J, Chen Y, He H (2019) Field measurement of pore pressures and liquid-gas distribution using drilling and ERT in a high food waste content MSW landfill in Guangzhou, China. Eng Geol 250:21–33

    Article  Google Scholar 

  • Martinho E (2023) Electrical resistivity and induced polarization methods for environmental investigations: an overview. Water Air Soil Pollut 234(4):215

    Article  CAS  Google Scholar 

  • Martorana R, Capizzi P, Pirrera C (2023) Unconventional arrays for 3D electrical resistivity and induced polarization tomography to detect leachate concentration in a waste landfill. Appl Sci 13(12):7203

    Article  CAS  Google Scholar 

  • Maryadi M, Champai FMS, Triananda IN, Fitriana DN (2020) Analysis of groundwater contamination level in residential areas around Cipayung landfill using ground penetrating radar. IOP Conf Ser: Mater Sci Eng 874:012013

    Google Scholar 

  • Maurya PK, Rønde VK, Fiandaca G, Balbarini N, Auken E, Bjerg PL, Christiansen AV (2017) Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography-with correlation to ionic strength measured in screens. J Appl Geophys 138:1–8

    Article  Google Scholar 

  • Mepaiyeda S, Madi K, Gwavava O, Baiyegunhi C, Sigabi L (2019) Contaminant delineation of a landfill site using electrical resistivity and induced polarization methods in Alice, Eastern Cape, South Africa. Int J Geophys 2019:1–13

    Article  Google Scholar 

  • Moser C, Binley A, Flores-Orozco A (2023) 3D electrode configurations for spectral induced polarization surveys of landfills. Waste Manage 169:208–222

    Article  Google Scholar 

  • Narciso J, Azevedo L, Van De Vijver E, Van Meirvenne M (2021) Geostatistical electromagnetic inversion for landfill characterization. In: Symposium on the application of geophysics to engineering and environmental problems (SAGEEP) proceedings, pp 35–38

    Google Scholar 

  • Nguyen F, Ghose R, Manrique II, Robert T, Dumont G (2018) Managing past landfills for future site development: a review of the contribution of geophysical methods. In: 4th International symposium on enhanced landfill mining, Mechelen, 05–06 Feb 2018

    Google Scholar 

  • Osinowo OO, Falufosi MO, Omiyale EO (2018) Integrated electromagnetic (EM) and electrical resistivity tomography (ERT) geophysical studies of environmental impact of Awotan dumpsite in Ibadan, southwestern Nigeria. J Afr Earth Sc 140:42–51

    Article  Google Scholar 

  • Piegari E, De Donno G, Melegari D, Paoletti V (2023) A machine learning-based approach for mapping leachate contamination using geoelectrical methods. Waste Manage 157:121–129

    Article  CAS  Google Scholar 

  • Ramalho EC, Dill AC, Rocha R (2013) Assessment of the leachate movement in a sealed landfill using geophysical methods. Environ Earth Sci 68:343–354

    Article  CAS  Google Scholar 

  • Soupios P, Ntarlagiannis D (2017) Characterization and monitoring of solid waste disposal sites using geophysical methods: current applications and novel trends. In: Modelling trends in solid and hazardous waste management, pp 75–103

    Google Scholar 

  • Steiner M, Katona T, Fellner J, Flores-Orozco A (2022) Quantitative water content estimation in landfills through joint inversion of seismic refraction and electrical resistivity data considering surface conduction. Waste Manage 149:21–32

    Article  Google Scholar 

  • Suknark P, Buddhawong S, Wangyao K (2023) Investigating the effect of waste age and soil covering on waste characteristics prior to landfill mining using an electrical resistivity tomography technique. J Environ Manage 339:117898

    Article  Google Scholar 

  • Sun X, Qian X, Nai C, Xu Y, Liu Y, Yao G, Dong L (2023) LDI-MVFNet: a multi-view fusion deep network for leachate distribution imaging. Waste Manage 157:180–189

    Article  CAS  Google Scholar 

  • Tsourlos P, Vargemezis GN, Fikos I, Tsokas GN (2014) DC geoelectrical methods applied to landfill investigation: case studies from Greece. First Break 32(8):81–89

    Article  Google Scholar 

  • Umar MS, Ghazali MD, Samad AM, Zainon O, Zainuddin K, Marzuki F (2022) Implementation of Ground penetrating radar in assessing leachate in sanitary landfill. In: 2022 IEEE 20th student conference on research and development (SCOReD), 8–9 Nov 2022, Bangi, Malaysia

    Google Scholar 

  • Van De Vijver E, Manrique II, Bobe C, Caterina D, Hermans T, Wille E, Nguyen F (2021) Geophysics in support of dynamic landfill management. In: SEG international exposition and annual meeting, p D011S135R001https://doi.org/10.1190/segam2021-3594435.1

  • Wemegah DD, Fiandaca G, Auken E, Menyeh A, Danuor SK (2017) Spectral time-domain induced polarisation and magnetic surveying–an efficient tool for characterisation of solid waste deposits in developing countries. Near Surface Geophys 15(1):75–84

    Article  Google Scholar 

  • Yin K, Tong HH, Noh O, Wang J-Y, Giannis A (2015) Mapping refuse profile in Singapore old dumping ground through electrical resistivity, s-wave velocity and geotechnical monitoring. Bull Environ Contam Toxicol 94(3):275–281. https://doi.org/10.1007/s00128-014-1427-y

    Article  CAS  Google Scholar 

  • Yin K, Tong H, Giannis A, Wang JY, Chang VWC (2017) Multiple geophysical surveys for old landfill monitoring in Singapore. Environ Monit Assess 189:1–13. https://doi.org/10.1007/s10661-016-5722-4

    Article  Google Scholar 

  • Yochim A, Zytner RG, McBean EA, Endres AL (2013) Estimating water content in an active landfill with the aid of GPR. Waste Manage 33(10):2015–2028

    Article  Google Scholar 

  • Zhang T, Zhang D, Zheng D, Guo X, Zhao W (2022) Construction waste landfill volume estimation using ground penetrating radar. Waste Manag. Res. 40(8):1167–1175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Piegari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Donno, G., Melegari, D., Paoletti, V., Piegari, E. (2024). Electrical and Electromagnetic Prospecting for the Characterization of Municipal Waste Landfills: A Review. In: Anouzla, A., Souabi, S. (eds) Technical Landfills and Waste Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-52633-6_1

Download citation

Publish with us

Policies and ethics