Skip to main content

Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1453))

  • 354 Accesses

Abstract

There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tompa P, Davey NE, Gibson TJ, Babu MM (2014) A million peptide motifs for the molecular biologist. Mol Cell 55:161–169. https://doi.org/10.1016/j.molcel.2014.05.032

    Article  CAS  PubMed  Google Scholar 

  2. Van Roey K, Uyar B, Weatheritt RJ et al (2014) Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev 114:6733–6778. https://doi.org/10.1021/cr400585q

    Article  CAS  PubMed  Google Scholar 

  3. Mészáros B, Simon I, Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376. https://doi.org/10.1371/journal.pcbi.1000376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gouw M, Michael S, Sámano-Sánchez H et al (2018) The eukaryotic linear motif resource – 2018 update. Nucleic Acids Res 46:D428–D434. https://doi.org/10.1093/nar/gkx1077

    Article  CAS  PubMed  Google Scholar 

  5. Zeke A, Bastys T, Alexa A et al (2015) Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 11:837

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Roey K, Dinkel H, Weatheritt RJ et al (2013) The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 6:rs7. https://doi.org/10.1126/scisignal.2003345

    Article  CAS  PubMed  Google Scholar 

  7. Gógl G, Biri-Kovács B, Póti ÁL et al (2018) Dynamic control of RSK complexes by phosphoswitch-based regulation. FEBS J 285:46–71. https://doi.org/10.1111/febs.14311

    Article  CAS  PubMed  Google Scholar 

  8. Vidal M, Fields S (2014) The yeast two-hybrid assay: still finding connections after 25 years. Nat Methods 11:1203–1206

    Article  CAS  PubMed  Google Scholar 

  9. Dunham WH, Mullin M, Gingras A-C (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12:1576–1590. https://doi.org/10.1002/pmic.201100523

    Article  CAS  PubMed  Google Scholar 

  10. Bonetta L (2010) Interactome under construction. Nature 468:851–852. https://doi.org/10.1038/468851a

    Article  CAS  PubMed  Google Scholar 

  11. Blikstad C, Ivarsson Y (2015) High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal 13:38. https://doi.org/10.1186/s12964-015-0116-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Volkmer R, Tapia V, Landgraf C (2012) Synthetic peptide arrays for investigating protein interaction domains. FEBS Lett 586:2780–2786. https://doi.org/10.1016/j.febslet.2012.04.028

    Article  CAS  PubMed  Google Scholar 

  13. Davey NE, Seo M-H, Yadav VK et al (2017) Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 284:485–498. https://doi.org/10.1111/febs.13995

    Article  CAS  PubMed  Google Scholar 

  14. Larman HB, Zhao Z, Laserson U et al (2011) Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 29:535–541. https://doi.org/10.1038/nbt.1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivarsson Y, Arnold R, McLaughlin M et al (2014) Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci 111:2542–2547. https://doi.org/10.1073/pnas.1312296111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karimova G, Gauliard E, Davi M et al (2017) Protein–protein interaction: bacterial two-hybrid. In: Methods in molecular biology. Humana Press, Clifton, pp 159–176

    Google Scholar 

  17. Riegel E, Heimbucher T, Höfer T, Czerny T (2017) A sensitive, semi-quantitative mammalian two-hybrid assay. BioTechniques 62:206–214. https://doi.org/10.2144/000114544

    Article  CAS  PubMed  Google Scholar 

  18. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Methods Mol Biol 1319:155–175. https://doi.org/10.1007/978-1-4939-2748-7_8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Michnick SW, Ear PH, Landry C et al (2011) Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein–protein interactions in living cells. In: Methods in molecular biology. Humana Press, Clifton, pp 395–425

    Google Scholar 

  20. Cabantous S, Nguyen HB, Pedelacq J-D et al (2013) A new protein-protein interaction sensor based on tripartite split-GFP Association. Sci Rep 3:2854. https://doi.org/10.1038/srep02854

    Article  PubMed  PubMed Central  Google Scholar 

  21. To T-L, Zhang Q, Shu X (2016) Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions. Protein Sci 25:748–753. https://doi.org/10.1002/pro.2866

    Article  CAS  PubMed  Google Scholar 

  22. Lemmens I, Lievens S, Tavernier J (2015) MAPPIT, a mammalian two-hybrid method for in-cell detection of protein-protein interactions. Methods Mol Biol 1278:447–455. https://doi.org/10.1007/978-1-4939-2425-7_29

    Article  CAS  PubMed  Google Scholar 

  23. Gibson TJ, Dinkel H, Van Roey K, Diella F (2015) Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun Signal 13:42. https://doi.org/10.1186/s12964-015-0121-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edwards RJ, Palopoli N (2015) Computational prediction of short linear motifs from protein sequences. In: Methods in molecular biology. Humana Press, Clifton, pp 89–141

    Google Scholar 

  25. de Castro E, Sigrist CJA, Gattiker A et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365. https://doi.org/10.1093/nar/gkl124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krystkowiak I, Davey NE (2017) SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res 45:W464–W469. https://doi.org/10.1093/nar/gkx238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davey NE, Shields DC, Edwards RJ (2006) SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Res 34:3546–3554. https://doi.org/10.1093/nar/gkl486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haslam NJ, Shields DC (2012) Profile-based short linear protein motif discovery. BMC Bioinform 13:104. https://doi.org/10.1186/1471-2105-13-104

    Article  Google Scholar 

  30. Prytuliak R, Volkmer M, Meier M, Habermann BH (2017) HH-MOTiF: de novo detection of short linear motifs in proteins by hidden Markov model comparisons. Nucleic Acids Res 45:10921–10921. https://doi.org/10.1093/nar/gkx810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hertz EPT, Kruse T, Davey NE et al (2016) A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell 63:686–695. https://doi.org/10.1016/j.molcel.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  32. Sánchez IE, Beltrao P, Stricher F et al (2008) Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm. PLoS Comput Biol 4:e1000052. https://doi.org/10.1371/journal.pcbi.1000052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Kane PT, Mrksich M (2017) An assay based on SAMDI mass spectrometry for profiling protein interaction domains. J Am Chem Soc 139:10320–10327. https://doi.org/10.1021/jacs.7b03805

    Article  CAS  PubMed  Google Scholar 

  34. Beck DB, Narendra V, Drury WJ et al (2014) In vivo proximity labeling for the detection of protein–protein and protein–RNA interactions. J Proteome Res 13:6135–6143. https://doi.org/10.1021/pr500196b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang B, Tang S, Ma C et al (2017) Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat Commun 8:2240. https://doi.org/10.1038/s41467-017-02409-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pham ND, Parker RB, Kohler JJ (2013) Photocrosslinking approaches to interactome mapping. Curr Opin Chem Biol 17:90–101. https://doi.org/10.1016/j.cbpa.2012.10.034

    Article  CAS  PubMed  Google Scholar 

  37. Morell M, Ventura S, Avilés FX (2009) Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett 583:1684–1691. https://doi.org/10.1016/j.febslet.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  38. Kudla J, Bock R (2016) Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28:1002–1008. https://doi.org/10.1105/tpc.16.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286. https://doi.org/10.1038/nprot.2006.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dixon AS, Schwinn MK, Hall MP et al (2016) NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem Biol 11:400–408. https://doi.org/10.1021/acschembio.5b00753

    Article  CAS  PubMed  Google Scholar 

  41. Wu C-G, Chen H, Guo F et al (2017) PP2A-B’ holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discov 3:17027. https://doi.org/10.1038/celldisc.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grossmann A, Benlasfer N, Birth P et al (2015) Phospho-tyrosine dependent protein-protein interaction network. Mol Syst Biol 11:794

    Article  PubMed  Google Scholar 

  43. Shah NH, Löbel M, Weiss A, Kuriyan J (2018) Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. elife 7. https://doi.org/10.7554/eLife.35190

  44. Rogerson DT, Sachdeva A, Wang K et al (2015) Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 11:496–503. https://doi.org/10.1038/nchembio.1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uyar B, Weatheritt RJ, Dinkel H et al (2014) Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer? Mol BioSyst 10:2626–2642. https://doi.org/10.1039/C4MB00290C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mészáros B, Zeke A, Reményi A et al (2016) Systematic analysis of somatic mutations driving cancer: uncovering functional protein regions in disease development. Biol Direct 11:23. https://doi.org/10.1186/s13062-016-0125-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corbi-Verge C, Kim PM (2016) Motif mediated protein-protein interactions as drug targets. Cell Commun Signal 14:8. https://doi.org/10.1186/s12964-016-0131-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu S, Wang F, Tan X et al (2018) FBW7 targets KLF10 for ubiquitin-dependent degradation. Biochem Biophys Res Commun 495:2092–2097. https://doi.org/10.1016/j.bbrc.2017.11.187

    Article  CAS  PubMed  Google Scholar 

  49. Hietakangas V, Anckar J, Blomster HA et al (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci 103:45–50. https://doi.org/10.1073/pnas.0503698102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research, Development and Innovation Office, Hungary (OTKA NN 114309, OTKA PD120973 and KKP_17 126963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Reményi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeke, A., Alexa, A., Reményi, A. (2024). Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes. In: Vega, M.C., Fernández, F.J. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-52193-5_5

Download citation

Publish with us

Policies and ethics