Skip to main content

Microbial Engineering in Biofuel Production—A Global Outlook, Advances, and Roadmap

  • Chapter
  • First Online:
Emerging Sustainable Technologies for Biofuel Production

Part of the book series: Environmental Science and Engineering ((ESE))

  • 54 Accesses

Abstract

The dwindling supply of fossil fuels and environmental issues have raised awareness of alternative energy sources like biofuels. Microbial engineering, on the contrary, presents a viable approach for sustainable biofuel production considering the rising demand for renewable energy sources and the pressing need to mitigate climate change. This technique involves the strategic manipulation of microbes to maximize the production of biofuels, a renewable and sustainable substitute for fossil fuels. However, stepping up biofuel production poses numerous challenges, such as cost-effectiveness, sustainability, and regulatory concerns. Therefore, overcoming challenges of scaling up microbial biofuel production and creating cost-effective downstream processing are need of the hour. Through the exploration of concepts such as techno-feasibility, resource sustainability, resilience, and techno-economic analysis, it is conceivable that the development of technologies aligned with the principles of the circular economy can be achieved. In the present chapter the importance of metabolic engineering, synthetic biology, systems biology, and multi-omics for the design and optimization of microbial strains for biofuel production is reviewed and discussed. Also, a brief overview of the current state of microbial engineering for biofuel production globally is presented. The development of more effective and resistant microbial strains with the integration of an omics knowledge base for comprehension of systems-level knowledge of metabolic networks along with the use of novel bioprocessing methods for large-scale production have also been emphasised in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adsul MG, Gokhale DV (2012) The conundrum of making biomass-to-biofuels economic. Biofuels 3(4):383–386. https://doi.org/10.4155/bfs.12.30

  • Ajanovic A, Haas R (2010) Economic challenges for the future relevance of biofuels in transport in EU countries. Energy 35(8):3340–3348. https://doi.org/10.1016/j.energy.2010.04.020

  • Amin L, Hashim H, Mahadi Z, Ibrahim M, Ismail K (2017) Determinants of stakeholders’ attitudes towards biodiesel. Biotechnol Biofuels 10(1). https://doi.org/10.1186/S13068-017-0908-8

  • Araújo K, Mahajan D, Kerr R, Da Silva M (2017) Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture (Switzerland) 7(4). MDPI AG. https://doi.org/10.3390/agriculture7040032

  • Aristos A, Merja P (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  Google Scholar 

  • Asghar A, Ajar R, Yadav N, Gupta A (2020) Biofuel and biorefinery technologies 10 prospects of renewable bioprocessing in future energy systems. http://www.springer.com/series/11833

  • Bailis R, Baka J (2011) Constructing sustainable biofuels: governance of the emerging biofuel economy. Ann Assoc Am Geogr 101(4):827–838. https://doi.org/10.1080/00045608.2011.568867

    Article  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941. https://doi.org/10.1038/nbt.3659

    Article  Google Scholar 

  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437. https://doi.org/10.1093/nar/gkt520

    Article  Google Scholar 

  • Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2018) Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production—a review. Renew Sustain Energy Rev 82:436–447. Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.09.070

  • Bilal, M., Ji, L., Xu, Y., Xu, S., Lin, Y., Iqbal, H. M. N., & Cheng, H. (2022). Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. In Frontiers in Bioengineering and Biotechnology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2022.851768

  • Buschke N, Schäfer R, Becker J, Wittmann C (2013) Metabolic engineering of industrial platform microorganisms for biorefinery applications—optimization of substrate spectrum and process robustness by rational and evolutive strategies. Biores Technol 135:544–554. https://doi.org/10.1016/j.biortech.2012.11.047

    Article  Google Scholar 

  • Buyx A, Tait J (2011) Ethical framework for biofuels. Science 332(6029):540–541. https://doi.org/10.1126/science.1206064

  • Cacciatore MA, Scheufele DA, Binder AR, Shaw BR (2012) Public attitudes toward biofuels: effects of knowledge, political partisanship, and media use. Polit Life Sci 31(1–2):36–51. https://doi.org/10.2990/31_1-2_36

    Article  Google Scholar 

  • Callegari A, Bolognesi S, Cecconet D, Capodaglio AG (2020) Production technologies, current role, and future prospects of biofuels feedstocks: a state-of-the-art review. Crit Rev Environ Sci Technol 50(4):384–436. https://doi.org/10.1080/10643389.2019.1629801

    Article  Google Scholar 

  • Cardoso VM, Campani G, Santos MP, Silva GG, Pires MC, Gonçalves VM, de Giordano R, Sargo CR, Horta ACL, Zangirolami TC (2020) Cost analysis based on bioreactor cultivation conditions: production of a soluble recombinant protein using Escherichia coli BL21(DE3). Biotechnol Rep 26.https://doi.org/10.1016/j.btre.2020.e00441

  • Chen H, Xu M, Guo Q, Yang L, Ma Y (2016) A review on present situation and development of biofuels in China. J Energy Inst 89(2):248–255.https://doi.org/10.1016/j.joei.2015.01.022

  • Chen Y, Wu C, Fan X, Zhao X, Zhao X, Shen T, Wei D, Wang W (2020) Engineering of Trichoderma reesei for enhanced degradation of lignocellulosic biomass by truncation of the cellulase activator ACE3. Biotechnol Biofuels 13(1). https://doi.org/10.1186/s13068-020-01701-3

  • Cheng J et al (2010) Advanced biofuel technologies status and barriers. http://econ.worldbank.org

  • Cherubini F, Strómman AH (2010) Production of biofuels and biochemicals from lignocellulosic biomass: estimation of maximum theoretical yields and efficiencies using matrix algebra. Energy Fuels 24(4):2657–2666. https://doi.org/10.1021/ef901379s

    Article  Google Scholar 

  • Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, Chang JS (2018) Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol J 13(6). Wiley-VCH Verlag. https://doi.org/10.1002/biot.201700618

  • Choi O, Sang BI (2016) Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels 9(1). https://doi.org/10.1186/s13068-016-0426-0

  • Chu Y, Li M, Jin J, Dong X, Xu K, Jin L, Qiao Y, Ji H (2023) Advances in the application of the non-conventional yeast fichia kudriavzevii in food and biotechnology industries. J Fungi 9(2). MDPI. https://doi.org/10.3390/jof9020170

  • Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16(1):16–22. Nature Publishing Group. https://doi.org/10.1038/nmat4834

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303. https://doi.org/10.1038/nature11475

  • Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG (2018) Synthetic and systems biology for microbial production of commodity chemicals. npj Syst Biol Appl 2. Nature Publishing Group. https://doi.org/10.1038/npjsba.2016.9

  • Ciaian P, Kancs A, Pirolix G, Rajcaniova M, Piroli G (2015) LICOS discussion paper series from a rise in B to a fall in C? SVAR analysis of environmental impact of biofuels *. http://www.econ.kuleuven.be/licos

  • Coleman AM, Abodeely JM, Skaggs RL, Moeglein WA, Newby DT, Venteris ER, Wigmosta MS (2014) An integrated assessment of location-dependent scaling for microalgae biofuel production facilities

    Google Scholar 

  • Crépin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101. https://doi.org/10.1016/j.ymben.2016.05.002

  • Currie DH, Raman B, Gowen CM, Tschaplinski TJ, Land ML, Brown SD, Covalla SF, Klingeman DM, Yang ZK, Engle NL, Johnson CM, Rodriguez M, Joe Shaw A, Kenealy WR, Lynd LR, Fong SS, Mielenz JR, Davison BH, Hogsett DA, Herring CD (2015) Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Syst Biol 9(1). https://doi.org/10.1186/s12918-015-0159-x

  • Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. http://www.microbialcellfactories.com/content/9/1/3

  • Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86(Suppl 1). https://doi.org/10.1016/j.apenergy.2009.04.036

  • Dinamarca MA, Aranda-Olmedo I, Puyet A, Rojo F (2003) Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures. J Bacteriol 185(16):4772–4778. https://doi.org/10.1128/JB.185.16.4772-4778.2003

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4. https://doi.org/10.1186/1754-6834-4-32

  • Duraiarasan S (2012) Biofuel and bioactive compounds production from algae view project microalgal biodiesel—a comprehensive review on the potential and alternative biofuel. Res J Chem Sci 2(11). www.isca.in

  • Elavarasan RM (2018) The motivation for renewable energy and its comparison with other energy sources: a review. Eur J Sustain Dev Res 3(1). https://doi.org/10.20897/ejosdr/4005

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111. https://doi.org/10.1016/j.jare.2010.03.001

  • Energy Information Administration (2015) World energy demand and economic outlook Table 1–1. World energy consumption by country grouping, 2012–40 (quadrillion Btu). https://www.eia.gov/analysis/

  • Energy Agency I (2050) (2021). Net Zero by 2050—a roadmap for the global energy sector. www.iea.org/t&c/

  • Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microbial Cell Factor 13. http://www.microbialcellfactories.com/content/13/128

  • Erdrich P, Steuer R, Klamt S (2015) An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. BMC Syst Biol 9(1). https://doi.org/10.1186/s12918-015-0191-x

  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13(6–7):1275–1287. https://doi.org/10.1016/j.rser.2008.08.014

  • Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BO (2010) Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab Eng 12(3):173–186. https://doi.org/10.1016/j.ymben.2009.10.003

    Article  Google Scholar 

  • Filip O, Janda K, Kristoufek L, Zilberman D (2016) Dynamics and evolution of the role of biofuels in global commodity and financial markets. Nat Energy 1(12). https://doi.org/10.1038/nenergy.2016.169

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10(6):295–304. https://doi.org/10.1016/j.ymben.2008.06.009

    Article  Google Scholar 

  • Foster C, Charubin K, Papoutsakis ET, Maranas CD (2021) Modeling growth kinetics, interspecies cell fusion, and metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii syntrophic coculture. https://doi.org/10.1128/mSystems

  • Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuels 9(1). https://doi.org/10.1186/s13068-016-0502-5

  • Fung TKF, Choi DH, Scheufele DA, Shaw BR (2014) Public opinion about biofuels: the interplay between party identification and risk/benefit perception. Energy Policy 73:344–355. https://doi.org/10.1016/j.enpol.2014.05.016

    Article  Google Scholar 

  • Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S (2016) Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact 15(1). https://doi.org/10.1186/s12934-015-0406-2

  • Garba MU, Alhassan M, Kovo AS (2006) A review of advances and quality assessment of biofuels. http://ljs.academicdirect.org

  • Ghag SB, Vavilala SL, D’Souza JS (2019) Metabolic engineering and genetic manipulation of novel biomass species for biofuel production. In: Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts: technologies and approaches for scale-up and commercialization. Elsevier, pp 13–34. https://doi.org/10.1016/B978-0-12-817941-3.00002-4

  • Giampietro M, Ulgiati S, Pimente D (1997) Feasibility of large-scale biofuel production does an enlargement of scale change the picture? https://academic.oup.com/bioscience/article/47/9/587/222660

  • Girard P, Fallot A (2006) Review of existing and emerging technologies for the production of biofuels in developing countries. Energy Sustain Dev 10(2):92–108. https://doi.org/10.1016/S0973-0826(08)60535-9

    Article  Google Scholar 

  • Girbal L, Croux C, Vasconcelos I, Soucaille P (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17(3):287–297. https://doi.org/10.1111/j.1574-6976.1995.tb00212.x

  • Godha A, Jain P (2015) Sustainability reporting trend in Indian companies as per GRI framework: a comparative study. South Asian J Bus Manag Cases 4(1):62–73. https://doi.org/10.1177/2277977915574040

    Article  Google Scholar 

  • Goldemberg J, Guardabassi P (2009) Are biofuels a feasible option? Energy Policy 37(1):10–14. https://doi.org/10.1016/j.enpol.2008.08.031

    Article  Google Scholar 

  • Gomiero T (2015) Are biofuels an effective and viable energy strategy for industrialized societies? A reasoned overview of potentials and limits. Sustainability (Switzerland) 7(7):8491–8521. https://doi.org/10.3390/su7078491

    Article  Google Scholar 

  • Gottumukkala LD, Mathew A, Abraham A, Sukumaran RK (2019) Biobutanol production: microbes, feedstock, and strategies. In: Biomass, biofuels, biochemicals: biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Elsevier, pp 355–377. https://doi.org/10.1016/B978-0-12-816856-1.00015-4

  • Goyal N, Zhou Z, Karimi IA (2016) Metabolic processes of Methanococcus maripaludis and potential applications. Microb Cell Fact 15(1). https://doi.org/10.1186/s12934-016-0500-0

  • Grumaz C, Rais D, Kirstahler P, Vainshtein Y, Rupp S, Zibek S, Sohn K (2017) Draft genome sequence of Pseudonocardia autotrophica strain DSM 43083, an efficient producer of peroxidases for lignin modification. Genome Announcements 5(5). https://doi.org/10.1128/genomeA.01562-16

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725. Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.013

  • Gupta VK (2013) Applications of microbial engineering. CRC Press, Taylor & Francis Group

    Google Scholar 

  • Harrison MJ, Thompson B, Du Z-Y, Zienkiewicz K, Vande PN, Ostrom NE, Benning C, Bonito GM (2019) Algal-fungal symbiosis leads to photosynthetic mycelium. https://doi.org/10.7554/eLife.47815.001

  • He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K, Tang XY, Wang WG, Hu QC (2014) Zymomonas mobilis: a novel platform for future biorefineries. In: Biotechnology for biofuels, vol 7, issue 1. BioMed Central Ltd. https://doi.org/10.1186/1754-6834-7-101

  • Hirano K, Hara T, Ardianor, Nugroho RA, Segah H, Takayama N, Sulmin G, Komai Y, Okada S, Kawamura K (2019) Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-53619-y

  • Huang H-J, Ramaswamy S (2013) Overview of biomass conversion processes and separation and purification technologies in biorefineries. http://www.nrel.gov/biomass/biorefinery.html

  • Inman D, Nagle N, Jacobson J, Searcy E, Ray AE (2010) Feedstock handling and processing effects on biochemical conversion to biofuels. Biofuels Bioprod Biorefin 4(5):562–573. https://doi.org/10.1002/bbb.241

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2005) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8(4):243–254. https://doi.org/10.1159/000086705

  • Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sustain Energy Rev 14(2):763–771. https://doi.org/10.1016/j.rser.2009.10.005

  • Javed MR, Noman M, Shahid M, Ahmed T, Khurshid M, Rashid MH, Ismail M, Sadaf M, Khan F (2019) Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res 219:1–11. Elsevier GmbH. https://doi.org/10.1016/j.micres.2018.10.010

  • Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review: environmental sustainability of biofuels. Proc R Soc A: Math Phys Eng Sci 476(2243). https://doi.org/10.1098/RSPA.2020.0351

  • Jin YL, Jang YS, Lee J, Papoutsakis ET, Lee SY (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4(10):1432–1440. https://doi.org/10.1002/biot.200900142

  • Jordaan SM (2007) Ethical risks of attenuating climate change through new energy systems: the case of a biofuel system. Ethics Sci Environ Polit 7(1):23–29. https://doi.org/10.3354/esep00081

    Article  MathSciNet  Google Scholar 

  • Joshi A, Verma KK, Rajput V, Minkina T, Arora J (2022) Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 13(4):8135–8163. Taylor and Francis Ltd. https://doi.org/10.1080/21655979.2022.2051856

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189(3):918–928. https://doi.org/10.1128/JB.01292-06

  • Kaltschmitt M, Weber M (2006) Markets for solid biofuels within the EU-15. Biomass Bioenergy 30(11):897–907. https://doi.org/10.1016/j.biombioe.2006.06.009

    Article  Google Scholar 

  • Kang MJ, Hong SJ, Yoo D, Cho BK, Lee H, Choi HK, Kim DM, Lee CG (2021) Photosynthetic production of biodiesel in Synechocystis sp. PCC6803 transformed with insect or plant fatty acid methyltransferase. Bioprocess Biosyst Eng 44(7):1433–1439. https://doi.org/10.1007/s00449-021-02520-y

  • Karlsson M (2001) Ethics of sustainable development—a study of Swedish regulations for genetically modified organisms

    Google Scholar 

  • Keller MW, Lipscomb GL, Nguyen DM, Crowley AT, Schut GJ, Scott I, Kelly RM, Adams MWW (2017) Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microb Biotechnol 10(6):1535–1545. https://doi.org/10.1111/1751-7915.12486

  • Khanna M (2008) The magazine of food, farm, and resource issues cellulosic biofuels: are they economically viable and environmentally sustainable? Choices 23(3). http://www.choicesmagazine.org

  • Kibet JK, Korir BK, Mosonik BC (2021) A review of the current trends in the production and consumption of bioenergy. Prog Chem Biochem Res J 2021(2):109–133. https://doi.org/10.22034/pcbr.2021.126117

  • Kohli H (1980) Renewable energy: alcohol from biomass

    Google Scholar 

  • Konar D, Saha R, Bhattacharya D, Mukhopadhyay M (2020) Present status and future prospect of genetic and metabolic engineering for biofuels from lignocellulosic biomass. In: Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass. Elsevier, pp 37–46. https://doi.org/10.1016/B978-0-12-817953-6.00003-8

  • Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A (2017) Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Biofuels 10(1). https://doi.org/10.1186/s13068-017-0741-0

  • Koussa J, Chaiboonchoe A, Salehi-Ashtiani K (2014) Computational approaches for microalgal biofuel optimization: a review. BioMed Res Int 2014. Hindawi Limited. https://doi.org/10.1155/2014/649453

  • Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577. https://doi.org/10.1016/j.fuel.2013.08.045

    Article  Google Scholar 

  • Krauss C (2008) Taking flight on jatropha fuel

    Google Scholar 

  • Krupnov YA, Krasilnikova VG, Kiselev V, Yashchenko AV (2022) The contribution of sustainable and clean energy to the strengthening of energy security. Front Environ Sci 10. https://doi.org/10.3389/fenvs.2022.1090110

  • Kukreja S, Gunarathne SMS, Giri T, Goutam U, Gautam S (2021) CRISPR-CAS9: a genome editing tool for improvement of biofuel production in diatoms: a review. Plant Archiv 21(Suppl-1):202–209. https://doi.org/10.51470/plantarchives.2021.v21.s1.035

  • LaCroix RA, Sandberg TE, O’Brien EJ, Utrilla J, Ebrahim A, Guzman GI, Szubin R, Palsson BO, Feist AM (2015) Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl Environ Microbiol 81(1):17–30. https://doi.org/10.1128/AEM.02246-14

  • Lacerda MP, Oh EJ, Eckert C (2020) The model system Saccharomyces cerevisiae versus emerging non-model yeasts for the production of biofuels. Life 10(11):1–20. MDPI AG. https://doi.org/10.3390/life10110299

  • Larson ED, Jin H, Celik FE (2009) Large-scale gasification-based coproduction of fuels and electricity from switchgrass. Biofuels Bioprod Biorefin 3(2):174–194. https://doi.org/10.1002/bbb.137

    Article  Google Scholar 

  • Lee D, Nair R, Chen A (2009) Regulatory hurdles for transgenic biofuel crops. Biofuels Bioprod Biorefin 3(4):468–480. https://doi.org/10.1002/bbb.158

  • Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072. Nature Publishing Group. https://doi.org/10.1038/nbt.3365

  • Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Engineering Escherichia coli to see light. Nature 438(7067):441–442. https://doi.org/10.1038/nature04405

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14(5):288–304. Nature Publishing Group. https://doi.org/10.1038/nrmicro.2016.32

  • Lijewski AM, Knutson CM, Lenneman EM, Barney BM (2021) Evaluation of two thioesterases from Marinobacter aquaeolei VT8: relationship to wax ester production. FEMS Microbiol Lett 368(1). https://doi.org/10.1093/femsle/fnaa206

  • Liu Y, Gong AJ, Qiu LN, Li JR, Li FK (2015) Biodegradation of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa. Int J Environ Res Public Health 12(9):11829–11847. https://doi.org/10.3390/ijerph120911829

  • Lu Y, Khan ZA, Alvarez-Alvarado MS, Zhang Y, Huang Z, Imran M (2020) A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability (Switzerland) 12(12). MDPI. https://doi.org/10.3390/su12125078

  • Lundgren T, Marklund PO, Brännlund R, Kriström B (2008) The economics of biofuels. Int Rev Environ Resour Econ 2(3):237–280. https://doi.org/10.1561/101.00000017

    Article  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564. https://doi.org/10.1039/b807094f

  • Lynd LR, Larson E, Greene N, Laser M, Sheehan J, Dale BE, McLaughlin S, Wang M (2009) The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod Biorefin 3(2):113–123. https://doi.org/10.1002/bbb.134

    Article  Google Scholar 

  • Lyu L, Chu Y, Zhang S, Zhang Y, Huang Q, Wang S, Zhao ZK (2021) Engineering the oleaginous yeast Rhodosporidium toruloides for improved resistance against inhibitors in biomass hydrolysates. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.768934

  • Madjarov J, Soares R, Paquete CM, Louro RO (2022) Sporomusa ovata as catalyst for bioelectrochemical carbon dioxide reduction: a review across disciplines from microbiology to process engineering. Front Microbiol 13. Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.913311

  • Martin M (2013) Industrial symbiosis in the biofuel industry: quantification of the environmental performance and identification of synergies. Linköping University, Department of Management and Engineering

    Google Scholar 

  • Mashayekhi M, Sarrafzadeh MH, Tavakoli O, Soltani N, Faramarzi MA (2017) Potential for biodiesel production and carbon capturing from Synechococcus Elongatus: an isolation and evaluation study. Biocatal Agric Biotechnol 9:230–235. https://doi.org/10.1016/j.bcab.2017.01.005

  • McKone TE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS, Masanet E, Lobscheid A, Santero N, Mishra U, Barrett A, Bomberg M, Fingerman K, Scown C, Strogen B, Horvath A (2011) Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol 45(5):1751–1756. https://doi.org/10.1021/es103579c

    Article  Google Scholar 

  • Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6(1). Informa Healthcare. https://doi.org/10.1080/23311932.2020.1783174

  • Mol APJ (2007) Boundless biofuels? Between environmental sustainability and vulnerability. Sociol Rural 47(4):297–315. https://doi.org/10.1111/j.1467-9523.2007.00446.x

    Article  Google Scholar 

  • Monteiro RRC, Dos Santos IA, Arcanjo MRA, Cavalcante CL, de Luna FMT, Fernandez-Lafuente R, Vieira RS (2022) Production of jet biofuels by catalytic hydroprocessing of esters and fatty acids: a review. Catalysts 12(2). MDPI. https://doi.org/10.3390/catal12020237

  • Moraes LE, Blow MJ, Hawley ER, Piao H, Kuo R, Chiniquy J, Shapiro N, Woyke T, Fadel JG, Hess M (2017) Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production. AMB Express 7(1). https://doi.org/10.1186/s13568-017-0338-9

  • Morone P, Strzałkowski A, Tani A (2019) Biofuel transitions: an overview of regulations and standards for a more sustainable framework. In: Biofuels for a more sustainable future: life cycle sustainability assessment and multi-criteria decision making. Elsevier, pp 21–46. https://doi.org/10.1016/B978-0-12-815581-3.00002-6

  • Msangi S, Sulser T, Rosegrant M, Valmonte-santos R, Ringler C (2008) Global scenarios for biofuels: impacts and implications

    Google Scholar 

  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production

    Google Scholar 

  • Nazari MT, Mazutti J, Basso LG, Colla LM, Brandli L (2021) Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review. Environ Dev Sustain 23(8):11139–11156. Springer Science and Business Media B.V. https://doi.org/10.1007/s10668-020-01110-4

  • Nazem-Bokaee H, Gopalakrishnan S, Ferry JG, Wood TK, Maranas CD (2016) Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb Cell Fact 15(1). https://doi.org/10.1186/s12934-015-0404-4

  • Nogales J, Palsson B, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2. https://doi.org/10.1186/1752-0509-2-79

  • Oh EJ, Jin YS (2020) Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 20(1). Oxford University Press. https://doi.org/10.1093/femsyr/foz089

  • Oh YK, Hwang KR, Kim C, Kim JR, Lee JS (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2018.02.089

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893. https://doi.org/10.1128/AEM.57.4.893-900.1991

    Article  Google Scholar 

  • Olorunsogbon T, Adesanya Y, Atiyeh HK, Okonkwo CC, Ujor VC, Ezeji TC (2022) Effects of Clostridium beijerinckii and medium modifications on acetone–butanol–ethanol production from switchgrass. Front Bioeng Biotechnol 10. https://doi.org/10.3389/fbioe.2022.942701

  • Oluchukwu A, Innocent A, Ogochukwu E (2014) Sustainable sources of energy and the expected benefits to Nigerian economy. Int J Sustain Energy Environ Res 3(2). http://pakinsight.com/?ic=journal&journal=13

  • Ormandy EH, Dale J, Griffin G (2011) Genetic engineering of animals: ethical issues, including welfare concerns. Can Vet J 52(5):544. /pmc/articles/PMC3078015/

    Google Scholar 

  • Orsi E, Beekwilder J, Eggink G, Kengen SWM, Weusthuis RA (2021) The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng 118(2), 531–541. John Wiley and Sons Inc. https://doi.org/10.1002/bit.27593

  • Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Ala’ Al-Muhtaseb H, David, Rooney W (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett 19:4075–4118. https://doi.org/10.1007/s10311-021-01273-0

  • Oswald F, Zwick M, Omar O, Hotz EN, Neumann A (2018) Growth and product formation of Clostridium ljungdahlii in presence of cyanide. Front Microb 9(JUN). https://doi.org/10.3389/fmicb.2018.01213

  • Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li C, Singh S, Sale KL, Adams PD, Keasling JD, Simmons BA, Holmes BM, Mukhopadhyay A (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem 13(10):2743–2749. https://doi.org/10.1039/c1gc15327g

  • Ozsoz M, Au I, Pp C (2019) Application of Crispr technology for the generation of biofuels: a review

    Google Scholar 

  • O’Connor RE, Bord RJ, Fisher A (1999) Risk perceptions, general environmental beliefs, and willingness to address climate change. Risk Anal 19(3):461–471. https://doi.org/10.1111/j.1539-6924.1999.tb00421.x

    Article  Google Scholar 

  • Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

  • Parrish DJ (2009) New biofuels industry: biomass availability and supply chain. Appl Biochem Biotechnol 154(1–3):268–270. https://doi.org/10.1007/s12010-009-8612-1

    Article  Google Scholar 

  • Passell H, Dhaliwal H, Reno M, Wu B, Ben Amotz A, Ivry E, Gay M, Czartoski T, Laurin L, Ayer N (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manag 129:103–111. https://doi.org/10.1016/j.jenvman.2013.06.055

    Article  Google Scholar 

  • Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328. https://doi.org/10.1038/nature11478

  • Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2015) Engineering terpene biosynthesis in streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol 4(4):393–399. https://doi.org/10.1021/sb5002517

  • Piemonte V, Paola LD, Russo V (2014) An LCA study on feedstocks and processes for biofuels production. Chem Eng Trans 37:517–522. https://doi.org/10.3303/CET1437087

    Article  Google Scholar 

  • Pira S (2020) The importance of renewable energies with emphasize on wind power. www.ijert.org

  • Quiroz Arita CE, Peebles C, Bradley TH (2015) Scalability of combining microalgae-based biofuels with wastewater facilities: a review. Algal Res 9:160–169. Elsevier B.V. https://doi.org/10.1016/j.algal.2015.03.001

  • Rajagopal D, Sexton S, Hochman G, Zilberman D (2009) Recent developments in renewable technologies: R&D investment in advanced biofuels. Annu Rev Resource Econ 1(1):621–644. https://doi.org/10.1146/annurev.resource.050708.144259

    Article  Google Scholar 

  • Rajagopal D, Sexton SE, Roland-Holst D, Zilberman D (2007) Challenge of biofuel: filling the tank without emptying the stomach? Environ Res Lett 2(4). https://doi.org/10.1088/1748-9326/2/4/044004

  • Rajagopal D, Zilberman D (2007) Review of environmental, economic and policy aspects of biofuels. http://econ.worldbank.org

  • Ricciardelli A, Casillo A, Vergara A, Balasco N, Corsaro MM, Tutino ML, Parrilli E (2019) Environmental conditions shape the biofilm of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microbiol Res 218:66–75. https://doi.org/10.1016/j.micres.2018.09.010

  • Rodriguez S, Denby CM, Vu T, Baidoo EEK, Wang G, Keasling JD (2016) ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microb Cell Fact 15(1). https://doi.org/10.1186/s12934-016-0447-1

  • Rollins MF, Schuman JT, Paulus K, Bukhari HST, Wiedenheft B (2015) Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res 43(4):2216–2222. https://doi.org/10.1093/nar/gkv094

  • Romero S, Merino E, Bolívar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: Lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73(16):5190–5198. https://doi.org/10.1128/AEM.00625-07

  • Román-Figueroa C, Paneque M (2015) Ethics and biofuel production in Chile. J Agric Environ Ethics 28(2):293–312. https://doi.org/10.1007/s10806-015-9535-1

    Article  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845. Nature Publishing Group. https://doi.org/10.1038/nature07190

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113. https://doi.org/10.1016/j.ymben.2013.07.003

    Article  Google Scholar 

  • Rupprecht J (2009) From systems biology to fuel-Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142(1):10–20. https://doi.org/10.1016/j.jbiotec.2009.02.008

    Article  Google Scholar 

  • Ryu DDY, Lee SB (1986) Enzymatic hydrolysis of cellulose: determination of kinetic parameters. Chem Eng Commun 45(1–6):119–134. https://doi.org/10.1080/00986448608911377

    Article  Google Scholar 

  • Saha S, Sharma A, Purkayastha S, Pandey K, Dhingra S (2018) Bio-plastics and biofuel: is it the way in future development for end users? Plastics to energy: fuel, chemicals, and sustainability implications, pp 365–376. https://doi.org/10.1016/B978-0-12-813140-4.00014-5

  • Sandesh K, Ujwal P (2021) Trends and perspectives of liquid biofuel—process and industrial viability. Energy Convers Manag X 10. https://doi.org/10.1016/j.ecmx.2020.100075

  • Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2018.05.033

  • Sastry SVAR, Sreenu P (2012) New energy sources and its sustainability. In: AICERA 2012—Annual international conference on emerging research areas: innovative practices and future trends. https://doi.org/10.1109/AICERA.2012.6306705

  • Savaliya ML, Dhorajiya BD, Dholakiya BZ (2015) Recent advancement in production of liquid biofuels from renewable resources: a review. Res Chem Intermed 41(2):475–509. https://doi.org/10.1007/s11164-013-1231-z

    Article  Google Scholar 

  • Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13(1):167–178. https://doi.org/10.1016/j.rser.2007.07.011

  • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82(3):523–531. https://doi.org/10.1111/tpj.12780

  • Searchinger TD, Wirsenius S, Beringer T, Dumas P (2018) Assessing the efficiency of changes in land use for mitigating climate change. Nature 564(7735):249–253. https://doi.org/10.1038/s41586-018-0757-z

    Article  Google Scholar 

  • Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101(5):1036–1052. https://doi.org/10.1002/bit.22010

  • Sentanuhady J, Atmaja GPSG, Muflikhun MA (2021) Challenges of biofuel applications in industrial and automotive: a review. J Eng Sci Technol Rev 14(4):119–134. https://doi.org/10.25103/jestr.144.16

  • Shanmugam S, Ngo HH, Wu YR (2020) Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review. Renew Energy 149:1107–1119. Elsevier Ltd. https://doi.org/10.1016/j.renene.2019.10.107

  • Shanmugam KT, Ingram LO (2022) Principles and practice of designing microbial biocatalysts for fuel and chemical production. J Ind Microbiol Biotechnol 49(2). Oxford University Press. https://doi.org/10.1093/jimb/kuab016

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus

    Google Scholar 

  • Sheppard N (2008) Glenn Beck exposes ethanol’s connection to rising food prices

    Google Scholar 

  • Shi G, Yin H, Ye J, Peng H, Li J, Luo C (2013) Aerobic biotransformation of decabromodiphenyl ether (PBDE-209) by Pseudomonas aeruginosa. Chemosphere 93(8):1487–1493. https://doi.org/10.1016/j.chemosphere.2013.07.044

  • Shi S, Qi N, Nielsen J (2022) Microbial production of chemicals driven by CRISPR-Cas systems. Curr Opin Biotechnol 73:34–42. Elsevier Ltd. https://doi.org/10.1016/j.copbio.2021.07.002

  • Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) ETHANOL PRODUCTION FROM XYLOSE BY Pichia stipitis NRRL Y-7124 IN A STIRRED TANK BIOREACTOR. Braz J Chem Eng 28:151–156. https://www.abeq.org.br/bjche

  • Simmons BA (2011) Opportunities and challenges in advanced biofuel production: the importance of synthetic biology and combustion science. Biofuels 2(1):5–7. https://doi.org/10.4155/bfs.10.75

  • Sobrino FH, Monroy CR, Luís Hernández Pérez J (2010) Biofuels in Spain: market penetration analysis and competitiveness in the automotive fuel market. https://doi.org/10.1016/j.rser.2010.06.017

  • Sokhansanj S, Mani S, Turhollow S, Kumar A, Bransby D, Lynd L, Laser M (2009) Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—current technology and envisioning a mature technology. Biofuels Bioprod Bioref 3(2):124–141. https://doi.org/10.1002/bbb.129

  • Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38(11):6977–6988. https://doi.org/10.1016/j.enpol.2010.06.066

    Article  Google Scholar 

  • Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 18(4):1049–1072. Springer. https://doi.org/10.1007/s10311-020-00999-7

  • Staab B, Duffield JA (2019) Biofuel impact on food prices index and land use change. https://www.elsevier.com/open-access/userlicense/1.0/

  • Stambouli AB (2011) Fuel cells: the expectations for an environmental-friendly and sustainable source of energy. Renew Sustain Energy Rev 15(9):4507–4520. https://doi.org/10.1016/j.rser.2011.07.100

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804. https://doi.org/10.1126/science.1139612

  • Stephen JL, Periyasamy B (2018) Innovative developments in biofuels production from organic waste materials: a review. Fuel 214:623–633. Elsevier Ltd. https://doi.org/10.1016/j.fuel.2017.11.042

  • Straub CT, Bing RG, Wang JP, Chiang VL, Adams MWW, Kelly RM (2020) Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar. Biotechnol Biofuels 13(1). https://doi.org/10.1186/s13068-020-01675-2

  • ’t Lam GP, Vermuë MH, Eppink MHM, Wijffels RH, van den Berg C (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol 36(2):216–227. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2017.10.011

  • Tai M, Stephanopoulos GN (2012) Metabolic engineering: enabling technology for biofuels production. Wiley Interdiscip Rev: Energy Environ 1(2):165–172

    Google Scholar 

  • Takemura K, Kato J, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y (2021) Autotrophic growth and ethanol production enabled by diverting acetate flux in the metabolically engineered Moorella thermoacetica. J Biosci Bioeng 132(6):569–574. https://doi.org/10.1016/j.jbiosc.2021.08.005

  • Thakor NS, Patel MA, Trivedi UB, Patel KC (2002) Production of poly(b-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene

    Google Scholar 

  • The Gazette of India (2018) National_biofuel_policy_of_India_2018. Bharat Ka Rajpatra

    Google Scholar 

  • Thiele I, Jamshidi N, Fleming RMT, Palsson BO (2009) Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 5(3):e1000312. https://doi.org/10.1371/journal.pcbi.1000312

  • Thomassen G, Egiguren Vila U, Van Dael M, Lemmens B, Van Passel S (2016) A techno-economic assessment of an algal-based biorefinery. Clean Technol Environ Policy 18(6):1849–1862. https://doi.org/10.1007/S10098-016-1159-2

    Article  Google Scholar 

  • Thompson PB (2008) The agricultural ethics of biofuels: a first look. J Agric Environ Ethics 21(2):183–198. https://doi.org/10.1007/s10806-007-9073-6

    Article  Google Scholar 

  • Tian L, Perot SJ, Hon S, Zhou J, Liang X, Bouvier JT, Guss AM, Olson DG, Lynd LR (2017) Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Microb Cell Fact 16(1). https://doi.org/10.1186/s12934-017-0783-9

  • Turhollow A, Perlack R, Eaton L, Langholtz M, Brandt C, Downing M, Wright L, Skog K, Hellwinckel C, Stokes B, Lebow P (2014) The updated billion-ton resource assessment. http://www.elsevier.com/open-access/userlicense/1.0/

  • Ueda M, Sakuragi H, Kuroda K (2011) Molecular breeding of advanced microorganisms for biofuel production. J Biomed Biotechnol 2011. https://doi.org/10.1155/2011/416931

  • Vasić K, Knez Ž, Leitgeb M (2021) Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26(3). MDPI AG. https://doi.org/10.3390/molecules26030753

  • van der Laak WWM, Raven RPJM, Verbong GPJ (2007) Strategic niche management for biofuels: analysing past experiments for developing new biofuel policies. Energy Policy 35(6):3213–3225. https://doi.org/10.1016/j.enpol.2006.11.009

    Article  Google Scholar 

  • Vásquez MC, Silva EE, Castillo EF (2017) Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 105:197–206. Elsevier Ltd. https://doi.org/10.1016/j.biombioe.2017.07.008

  • Wadler CS, Wolters JF, Fortney NW, Throckmorton KO, Zhang Y, Miller CR, Schneider RM, Wendt-Pienkowski E, Currie CR, Donohue TJ, Noguera DR, Hittinger CT, Thomas MG (2022) Utilization of lignocellulosic biofuel conversion residue by diverse microorganisms. Biotechnol Biofuels Bioprod 15(1). https://doi.org/10.1186/s13068-022-02168-0

  • Wang J, Guleria S, Koffas MA, Yan Y (2015) Microbial production of value-added nutraceuticals, pp 1–2. http://www.elsevier.com/open-access/userlicense/1.0/

  • Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309. Elsevier Ltd. https://doi.org/10.1016/j.biortech.2018.03.064

  • Wegener DT, Kelly JR, Wallace LE, Sawicki V (2014) Public opinions of biofuels: attitude strength and willingness to use biofuels. Biofuels 5(3):249–259. https://doi.org/10.1080/17597269.2014.921011

    Article  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A (2004) Top value added chemicals from biomass Volume I-Results of screening for potential candidates from sugars and synthesis gas produced by the staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass Program (EERE) for the Office of the Energy Efficiency and Renewable Energy. http://www.osti.gov/bridge

  • Wheaton GH, Mukherjee A, Kelly RM (2016) Transcriptomes of the extremely thermoacidophilic archaeon Metallosphaera Sedula exposed to metal “shock” reveal generic and specific metal responses. Appl Environ Microbiol 82(15):4613–4627. https://doi.org/10.1128/AEM.01176-16

  • Wyman CE, Huber G (2009) What could be possible with mature biofuels technologies? Biofuels Bioprod Biorefin 3(2):105–107. Wiley. https://doi.org/10.1002/bbb.139

  • Yang Z, Sun Q, Tan G, Zhang Q, Wang Z, Li C, Qi F, Wang W, Zhang L, Li Z (2021) Engineering thermophilic Geobacillus thermoglucosidasius for riboflavin production. Microb Biotechnol 14(2):363–373. https://doi.org/10.1111/1751-7915.13543

  • Yoneyama F, Yamamoto M, Hashimoto W, Murata K (2015) Production of polyhydroxybutyrate and alginate from glycerol by azotobacter vinelandii under nitrogen-free conditions. Bioeng 6(4):209–217. https://doi.org/10.1080/21655979.2015.1040209

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34. https://doi.org/10.1007/s002530100624

  • Zhang T, Datta S, Eichler J, Ivanova N, Axen SD, Kerfeld CA, Chen F, Kyrpides N, Hugenholtz P, Cheng JF, Sale KL, Simmons B, Rubin E (2011) Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem 13(8):2083–2090. https://doi.org/10.1039/c1gc15193b

    Article  Google Scholar 

  • Zhang J, Chen Y, Fu L, Guo E, Wang B, Dai L, Si T (2021) Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr Opin Biotechnol 67:88–98. Elsevier Ltd. https://doi.org/10.1016/j.copbio.2021.01.010

  • Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46(11):2091–2110. Elsevier Ltd. https://doi.org/10.1016/j.procbio.2011.08.005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Paliya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, S., Paliya, S., Mandpe, A. (2024). Microbial Engineering in Biofuel Production—A Global Outlook, Advances, and Roadmap. In: Shah, M., Deka, D. (eds) Emerging Sustainable Technologies for Biofuel Production. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-52167-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52167-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52166-9

  • Online ISBN: 978-3-031-52167-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics