Skip to main content

Applications

  • Chapter
  • First Online:
Graphene-Bearing Polymer Composites

Abstract

This application-focused chapter elucidates the versatile utility of graphene-bearing polymer composites in addressing challenges related to electromagnetic interference (EMI) shielding and flame retardancy. Through a comprehensive exploration of these applications, the chapter highlights these composites’ exceptional properties and potential. Specifically tailored for EMI shielding, the composites demonstrate remarkable efficacy in attenuating electromagnetic waves across various frequencies. Furthermore, their incorporation in flame-retardant materials offers enhanced fire resistance and safety, which is vital for numerous industries. By showcasing practical examples and real-world scenarios, this chapter serves as a valuable resource for researchers, engineers, and industry professionals seeking innovative solutions in materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Pomestchenko, D. Stolyarov, E. Polyakova, I. Stolyarov, Thermoplastic polymer composites and methods for preparing, collecting, and tempering 3D printable materials and articles from same. Google Patents (2023)

    Google Scholar 

  2. D. Therriault, K. Chizari, Electrically conductive ink for solvent-cast 3D printing. Google Patents (2020)

    Google Scholar 

  3. L.W. Jen, F.Y.N., S. Jun, Electromagnetic wave shielding composite film (2014)

    Google Scholar 

  4. L. Yongyong, A kind of graphene-silicon electromagnetic shielding filler and electromagnetic screen coating (2018)

    Google Scholar 

  5. J.T. Orasugh, S.S. Ray, Functional and structural facts of effective electromagnetic interference shielding materials: a review. ACS Omega 8(9), 8134–8158 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Taj, S.R. Manohara, B. Siddlingeshwar, N. Raghavendra, M. Faisal, U.V. Khadke, Anticorrosion and electromagnetic interference shielding performance of bifunctional PEDOT-graphene nanocomposites. Diamond Relat. Mater. 132, 109690 (2023)

    Article  CAS  Google Scholar 

  7. P. Liu, Y. Huang, X. Zhang, Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene/poly (3,4-ethylenedioxythiophene) hybrid materials with Fe3O4 nanoparticles. J. Alloy. Compd. 617, 511–517 (2014)

    Article  CAS  Google Scholar 

  8. P. Liu, Y. Huang, X. Zhang, Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)–graphene: synthesis, characterization and their excellent microwave absorption properties. Compos. Sci. Technol. 95, 107–113 (2014)

    Article  CAS  Google Scholar 

  9. P. Liu, Y. Huang, X. Zhang, Preparation and excellent microwave absorption properties of ferromagnetic graphene/poly(3, 4-ethylenedioxythiophene)/CoFe2O4 nanocomposites. Powder Technol. 276, 112–117 (2015)

    Article  CAS  Google Scholar 

  10. J. Dalal, A. Gupta, S. Lather, K. Singh, S.K. Dhawan, A. Ohlan, Poly (3, 4-ethylene dioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding. J. Alloy. Compd. 682, 52–60 (2016)

    Article  CAS  Google Scholar 

  11. V.-T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.-G. Choi, MXene(Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 393, 124608 (2020)

    Article  CAS  Google Scholar 

  12. C. Xing, S. Zhu, Z. Ullah, X. Pan, F. Wu, X. Zuo, J. Liu, M. Chen, W. Li, Q. Li, L. Liu, Ultralight and flexible graphene foam coated with Bacillus subtilis as a highly efficient electromagnetic interference shielding film. Appl. Surf. Sci. 491, 616–623 (2019)

    Article  CAS  Google Scholar 

  13. H. Fang, H. Guo, Y. Hu, Y. Ren, P.-C. Hsu, S.-L. Bai, In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 188, 107975 (2020)

    Article  CAS  Google Scholar 

  14. D. Han, Y.-H. Zhao, S.-L. Bai, W.C. Ping, High shielding effectiveness of multilayer graphene oxide aerogel film/polymer composites. RSC Adv. 6(95), 92168–92174 (2016)

    Article  CAS  Google Scholar 

  15. H. Liu, Y. Xu, J.-P. Cao, D. Han, Q. Yang, R. Li, F. Zhao, Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. A Appl. Sci. Manuf. 148, 106476 (2021)

    Article  CAS  Google Scholar 

  16. S. Zhu, Q. Cheng, C. Yu, X. Pan, X. Zuo, J. Liu, M. Chen, W. Li, Q. Li, L. Liu, Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 189, 108012 (2020)

    Article  CAS  Google Scholar 

  17. W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao, M. Yuan, H. Bai, C. Gao, High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020)

    Article  CAS  Google Scholar 

  18. Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. L.J. Romasanta, M. Hernández, M.A. López-Manchado, R. Verdejo, Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res. Lett. 6(1), 508 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  20. N. Gill, V. Gupta, M. Tomar, A.L. Sharma, O.P. Pandey, D.P. Singh, Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band. Compos. Sci. Technol. 192, 108113 (2020)

    Article  CAS  Google Scholar 

  21. T. Lin, H. Yu, Y. Wang, L. Wang, S.Z. Vatsadze, X. Liu, Z. Huang, S. Ren, M.A. Uddin, B.U. Amin, S. Fahad, Polypyrrole nanotube/ferrocene-modified graphene oxide composites: from fabrication to EMI shielding application. J. Mater. Sci. 56(32), 18093–18115 (2021)

    Article  CAS  Google Scholar 

  22. P.R. Modak, D.V. Nandanwar, S.B. Kondawar, in Electromagnetic Interference Shielding Effectiveness of Graphene Based Conducting Polymer Nanocomposites. NAC 2019: Proceedings of the 2nd International Conference​ on Nanomaterials and​ Advanced Composites (Springer, 2020), pp. 31–40

    Google Scholar 

  23. A. Nazir, H. Yu, L. Wang, Y. He, Q. Chen, B.U. Amin, D. Shen, Electromagnetic interference shielding properties of ferrocene-based polypyrrole/carbon material composites. Appl. Phys. A 126(9), 749 (2020)

    Article  CAS  Google Scholar 

  24. P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18(5), 611–618 (2018)

    Article  Google Scholar 

  25. H. Wadhwa, S. Mahendia, S. Kumar, in Microwave Synthesized Graphene-PAni Nanocomposites for EMI Shielding. AIP Conference Processing (AIP Publishing LLC, 2019), p. 030123

    Google Scholar 

  26. K. Cheng, H. Li, M. Zhu, H. Qiu, J. Yang, In situ polymerization of graphene-polyaniline@ polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 10(4), 2368–2377 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Khasim, Polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)

    Article  Google Scholar 

  28. M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl. Mater. Interfaces. 10(36), 30752–30761 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. E.H. Awad, K.F. El-Nemr, M.M. Atta, A. Abdel-Hakim, A. Sharaf, Electromagnetic interference shielding efficiency of irradiated wood-plastic composites based on graphene oxide nanoparticles. Radiat. Phys. Chem. 203, 110629 (2023)

    Article  CAS  Google Scholar 

  30. D.-X. Yan, H. Pang, L. Xu, Y. Bao, P.-G. Ren, J. Lei, Z.-M. Li, Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology 25(14), 145705 (2014)

    Article  PubMed  Google Scholar 

  31. J. Jing, Y. Xiong, S. Shi, H. Pei, Y. Chen, P. Lambin, Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 207, 108732 (2021)

    Article  CAS  Google Scholar 

  32. H. Zhu, Y. Yang, H. Duan, G. Zhao, Y. Liu, Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. J. Mater. Sci.: Mater. Electron. 30(3), 2045–2056 (2019)

    CAS  Google Scholar 

  33. H. Ji, J. Li, J. Zhang, Y. Yan, Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene. Compos. A Appl. Sci. Manuf. 123, 158–169 (2019)

    Article  CAS  Google Scholar 

  34. D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.-G. Ren, J.-H. Wang, Z.-M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Func. Mater. 25(4), 559–566 (2015)

    Article  CAS  Google Scholar 

  35. Y. Chen, Y. Wang, H.-B. Zhang, X. Li, C.-X. Gui, Z.-Z. Yu, Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 82, 67–76 (2015)

    Article  CAS  Google Scholar 

  36. F. Shahzad, S.H. Lee, S.M. Hong, C.M. Koo, Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield. Res. Chem. Intermed. 44(8), 4707–4719 (2018)

    Article  CAS  Google Scholar 

  37. D. Skoda, J. Vilcakova, R.S. Yadav, B. Hanulikova, T. Capkova, M. Jurca, M. Urbanek, P. Machac, L. Simonikova, J. Antos, I. Kuritka, Nickel nanoparticle–decorated reduced graphene oxide via one-step microwave-assisted synthesis and its lightweight and flexible composite with polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer for electromagnetic wave shielding application. Adv. Compos. Hybrid Mater. 6(3), 113 (2023)

    Article  CAS  Google Scholar 

  38. Y. Guo, L. Pan, X. Yang, K. Ruan, Y. Han, J. Kong, J. Gu, Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. A Appl. Sci. Manuf. 124, 105484 (2019)

    Article  CAS  Google Scholar 

  39. F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S.M. Hong, C.M. Koo, Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos. Struct. 133, 1267–1275 (2015)

    Article  Google Scholar 

  40. N. Bagotia, H. Mohite, N. Tanaliya, D.K. Sharma, A comparative study of electrical, EMI shielding and thermal properties of graphene and multiwalled carbon nanotube filled polystyrene nanocomposites. Polym. Compos. 39(S2), E1041–E1051 (2018)

    Article  CAS  Google Scholar 

  41. S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl. Mater. Interfaces. 5(11), 4712–4724 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. L. Wei, W. Zhang, J. Ma, S.-L. Bai, Y. Ren, C. Liu, D. Simion, J. Qin, π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon 149, 679–692 (2019)

    Article  CAS  Google Scholar 

  43. J. Zhou, C. Liu, L. Xia, L. Wang, C. Qi, G. Zhang, Z. Tan, B. Ren, B. Yuan, Bridge-graphene connecting polymer composite with a distinctive segregated structure for simultaneously improving electromagnetic interference shielding and flame-retardant properties. Colloids Surf., A 661, 130853 (2023)

    Article  CAS  Google Scholar 

  44. B. Lee, U. Hwang, J. Kim, S.-H. Kim, K. Choi, I.-K. Park, C. Choi, J. Suhr, J.-D. Nam, Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability. Compos. Commun. 37, 101409 (2023)

    Article  Google Scholar 

  45. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.-K. Kim, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9(10), 9059–9069 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. G. George, S.M. Simon, V. Prakashan, M. Sajna, M. Faisal, R. Wilson, A. Chandran, P. Biju, C. Joseph, N. Unnikrishnan, Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties. RSC Adv. 8(53), 30412–30428 (2018)

    Article  CAS  Google Scholar 

  47. A. Kaushal, V. Singh, Effect of filler loading on the shielding of electromagnetic interference of reduced graphene oxide reinforced polypropylene nanocomposites prepared via a twin-screw extruder. J. Mater. Sci.: Mater. Electron. 31(24), 22162–22170 (2020)

    CAS  Google Scholar 

  48. R.S. Yadav, Anju, T. Yadav, I. Kuřitka, J. Vilčáková, D. Škoda, P. Urbánek, M. Machovský, M. Masař, M. Urbánek, L. Kalina, J. Havlica, Excellent, lightweight and flexible electromagnetic interference shielding nanocomposites based on polypropylene with MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide. Nanomaterials [Online] (2020)

    Google Scholar 

  49. R.S. Yadav, I. Kuřitka, J. Vilcakova, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Jurča, M. Urbánek, L. Kalina, J. Havlica, NiFe2O4 nanoparticles synthesized by dextrin from corn-mediated sol-gel combustion method and its polypropylene nanocomposites engineered with reduced graphene oxide for the reduction of electromagnetic pollution. ACS Omega 4(26), 22069–22081 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Raagulan, J. Ghim, R. Braveenth, K.Y. Chai, B.M. Kim, Improving the EMI shielding of graphene oxide (GNO)-coated glass-fiber–GNO–MA-grafted polypropylene (PP) composites and nylon 1D–2D nanocomposite foams. RSC Adv. 12(24), 15316–15328 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202–2208 (2012)

    Article  CAS  Google Scholar 

  52. Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, W. Wei, F. Peng, H. Xia, Fabrication of a flexible electromagnetic interference shielding Fe3O4@ reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018)

    Article  CAS  Google Scholar 

  53. A.A. Al-Ghamdi, A.A. Al-Ghamdi, Y. Al-Turki, F. Yakuphanoglu, F. El-Tantawy, Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices. Compos. B Eng. 88, 212–219 (2016)

    Article  CAS  Google Scholar 

  54. Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, W. Wei, F. Peng, H. Xia, Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018)

    Article  CAS  Google Scholar 

  55. G. Wang, X. Liao, J. Yang, W. Tang, Y. Zhang, Q. Jiang, G. Li, Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite. Compos. Sci. Technol. 184, 107847 (2019)

    Article  CAS  Google Scholar 

  56. D. Liu, Q.-Q. Kong, H. Jia, L.-J. Xie, J. Chen, Z. Tao, Z. Wang, D. Jiang, C.-M. Chen, Dual-functional 3D multi-wall carbon nanotubes/graphene/silicone rubber elastomer: thermal management and electromagnetic interference shielding. Carbon 183, 216–224 (2021)

    Article  CAS  Google Scholar 

  57. Y. Wang, Y. Guan, D. Liao, Y. He, S. Li, L. Zhou, C. Yu, Y. Chen, Y. Liu, H. Liu, Fabrication of cellulose nanofiber/reduced graphene oxide/nitrile rubber flexible films using pickering emulsion technology for electromagnetic interference shielding and piezoresistive sensor. Macromol. Mater. Eng. 306(6), 2100070 (2021)

    Article  CAS  Google Scholar 

  58. A. Nasr Esfahani, A. Katbab, A. Taeb, L. Simon, M.A. Pope, Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur. Polymer J. 95, 520–538 (2017)

    Article  CAS  Google Scholar 

  59. S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, Y.-C. Huang, Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013)

    Article  CAS  Google Scholar 

  60. Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017)

    Article  CAS  Google Scholar 

  61. B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces. 8(12), 8050–8057 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. S.-C. Lin, C.-C.M. Ma, S.-T. Hsiao, Y.-S. Wang, C.-Y. Yang, W.-H. Liao, S.-M. Li, J.-A. Wang, T.-Y. Cheng, C.-W. Lin, R.-B. Yang, Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 385, 436–444 (2016)

    Article  CAS  Google Scholar 

  63. Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang, J. Yi, Q. Yang, G. Li, Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. A Appl. Sci. Manuf. 123, 310–319 (2019)

    Article  CAS  Google Scholar 

  64. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011)

    Article  CAS  Google Scholar 

  65. S. Anand, S. Pauline, Electromagnetic interference shielding properties of BaCo2Fe16O27 nanoplatelets and RGO reinforced PVDF polymer composite flexible films. Adv. Mater. Interfaces 8(3), 2001810 (2021)

    Article  CAS  Google Scholar 

  66. J. Wang, H. Li, Z. Wang, D. Xin, J. Luo, S. Bai, H. Zhou, Improved electromagnetic interference shielding properties of poly (vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Polym. Compos. 43(10), 6966–6974 (2022)

    Article  CAS  Google Scholar 

  67. Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu, Y. Lei, C.B. Park, An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces. 12(32), 36568–36577 (2020)

    Article  CAS  PubMed  Google Scholar 

  68. R. Yang, Y. Zhou, Y. Ren, D. Xu, L. Guan, X. Guo, R. Zhang, B. Zhao, Promising PVDF-CNT-graphene-NiCo chains composite films with excellent electromagnetic interference shielding performance. J. Alloy. Compd. 908, 164538 (2022)

    Article  CAS  Google Scholar 

  69. B. Zhao, C. Zhao, M. Hamidinejad, C. Wang, R. Li, S. Wang, K. Yasamin, C.B. Park, Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J. Mater. Chem. C 6(38), 10292–10300 (2018)

    Article  CAS  Google Scholar 

  70. J. Fang, C. Chen, H. Qi, J. Zhang, X. Hou, L. Pan, X. Wang, Flexible multilayered poly(vinylidene fluoride)/graphene-poly(vinylidene fluoride) films for efficient electromagnetic shielding. ACS Appl. Nano Mater. 6(8), 6858–6868 (2023)

    Article  CAS  Google Scholar 

  71. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W.G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013)

    Google Scholar 

  72. B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces. 5(21), 11383–11391 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. H. Yang, Z. Yu, P. Wu, H. Zou, P. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018)

    Article  CAS  Google Scholar 

  74. Y. Meng, S. Sharma, J.S. Chung, W. Gan, S.H. Hur, W.M. Choi, Enhanced electromagnetic interference shielding properties of immiscible polyblends with selective localization of reduced graphene oxide networks. Polymers [Online] (2022)

    Google Scholar 

  75. S. Mondal, A. Kumar, Multifunctional silanized silica nanoparticle functionalized graphene oxide: polyetherimide composite film for EMI shielding applications. J. Mater. Sci.: Mater. Electron. 29(16), 14122–14131 (2018)

    CAS  Google Scholar 

  76. Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015)

    Article  CAS  Google Scholar 

  77. S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H.W. Seo, Y.C. Kim, J.-H. Lee, Y. Lee, J.-D. Nam, Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces. 6(20), 17647–17653 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. P. Sawai, P.P. Chattopadhaya, S. Banerjee, Synthesized reduce graphene oxide (rGO) filled polyetherimide based nanocomposites for EMI shielding applications. Mater. Today: Proc. 5(3, Part 3), 9989–9999 (2018)

    Google Scholar 

  79. H. Luo, J. Xie, L. Xiong, Y. Zhu, Z. Yang, Y. Wan, Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets. Compos. B Eng. 162, 484–490 (2019)

    Article  CAS  Google Scholar 

  80. C. Wan, J. Li, Graphene oxide/cellulose aerogels nanocomposite: preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohyd. Polym. 150, 172–179 (2016)

    Article  CAS  Google Scholar 

  81. L. Li, Z. Ma, P. Xu, B. Zhou, Q. Li, J. Ma, C. He, Y. Feng, C. Liu, Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 139, 106134 (2020)

    Article  CAS  Google Scholar 

  82. W. Yang, Y. Zhang, T. Liu, R. Huang, S. Chai, F. Chen, Q. Fu, Completely green approach for the preparation of strong and highly conductive graphene composite film by using nanocellulose as dispersing agent and mechanical compression. ACS Sustain. Chem. Eng. 5(10), 9102–9113 (2017)

    Article  CAS  Google Scholar 

  83. G. Han, Z. Ma, B. Zhou, C. He, B. Wang, Y. Feng, J. Ma, L. Sun, C. Liu, Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 583, 571–578 (2021)

    Article  CAS  PubMed  Google Scholar 

  84. Y. Huo, D. Guo, J. Yang, Y. Chang, C. Mu, A. Nie, B. Wang, J. Xiang, K. Zhai, T. Xue, F. Wen, Flexible graphene/bacterial celluloses Janus structure film with excellent electromagnetic interference shielding and Joule heating performance. Mater. Chem. Phys. 287, 126318 (2022)

    Article  CAS  Google Scholar 

  85. M. Li, F. Han, S. Jiang, M. Zhang, Q. Xu, J. Zhu, A. Ge, L. Liu, Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 8(24), 2101437 (2021)

    Article  CAS  Google Scholar 

  86. Z. Chen, Q. Zhang, W. Meng, Z. Wang, X. Han, J. Pu, Nickel-reduced graphene oxide-cellulose nanofiber composite papers for electromagnetic interference shielding. BioResources 15(1), 814–824 (2020)

    Article  CAS  Google Scholar 

  87. W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu, H. Jiang, F. Chen, Q. Fu, Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017)

    Article  CAS  Google Scholar 

  88. J. Li, S. Zhang, L. Wang, X. Liu, In Situ growth of Fe3O4 nanoparticles in poly(arylene ether nitrile)/graphene/carbon nanotube foams for electromagnetic interference shielding. ACS Appl. Nano Mater. 6(9), 7802–7813 (2023)

    Article  CAS  Google Scholar 

  89. S. Zhang, J. Ye, X. Liu, Constructing conductive network using 1D and 2D conductive fillers in porous poly(aryl ether nitrile) for EMI shielding. Colloids Surf. A 656, 130414 (2023)

    Article  CAS  Google Scholar 

  90. S. Zhang, H. Sun, T. Lan, Z. Bai, X. Liu, Facile preparation of graphene film and sandwiched flexible poly(arylene ether nitrile)/graphene composite films with high EMI shielding efficiency. Compos. A Appl. Sci. Manuf. 154, 106777 (2022)

    Article  CAS  Google Scholar 

  91. Dandapani, K. Devendra, Revannasiddappa, K.R. Vishnu, Thermal stability and electromagnetic interference of epoxy-graphene/hybrid composite materials. Mater. Today: Proc. 66, 1664–1670 (2022)

    Google Scholar 

  92. Q. Gao, G. Zhang, Y. Zhang, X. Fan, Z. Wang, S. Zhang, R. Xiao, F. Huang, X. Shi, J. Qin, Absorption dominated high-performance electromagnetic interference shielding epoxy/functionalized reduced graphene oxide/Ni-chains microcellular foam with asymmetric conductive structure. Compos. Sci. Technol. 223, 109419 (2022)

    Article  CAS  Google Scholar 

  93. J. Li, G. Zhang, X. Fan, Q. Gao, H. Zhang, J. Qin, X. Shi, X. Fang, Microcellular epoxy/reduced graphene oxide/multi-walled carbon nanotube nanocomposite foams for electromagnetic interference shielding. Appl. Surf. Sci. 552, 149232 (2021)

    Article  CAS  Google Scholar 

  94. S. Chhetri, P. Samanta, N.C. Murmu, S.K. Srivastava, T. Kuila, Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites. AIMS Mater. Sci 4(1), 61–74 (2016)

    Article  Google Scholar 

  95. C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi, H. Gu, J. Kong, D. Cao, J. Gu, Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11(46), 22590–22598 (2019)

    Article  CAS  PubMed  Google Scholar 

  96. A.F. Ahmad, S. Ab Aziz, Z. Abbas, S.J. Obaiys, A.M. Khamis, I.R. Hussain, M.H. Zaid, Preparation of a chemically reduced graphene oxide reinforced epoxy resin polymer as a composite for electromagnetic interference shielding and microwave-absorbing applications. Polymers [Online] (2018)

    Google Scholar 

  97. X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011)

    Article  CAS  Google Scholar 

  98. J. Xu, R. Chen, Z. Yun, Z. Bai, K. Li, S. Shi, J. Hou, X. Guo, X. Zhang, J. Chen, Lightweight epoxy/cotton fiber-based nanocomposites with carbon and Fe3O4 for electromagnetic interference shielding. ACS Omega 7(17), 15215–15222 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Y. Pan, B. Yang, N. Jia, Y. Yang, Y. Wang, N. Zhang, R. Xia, J. Qian, S. Wang, Y. Tu, Y. Shi, Y. Fang, Polymethyl methacrylate (PMMA) nanocomposites containing graphene nanoplatelets decorated with nickel nanoparticles for electromagnetic interference (EMI) shielding and thermal management applications. Macromol. Mater. Eng. 307(9), 2200220 (2022)

    Article  CAS  Google Scholar 

  100. S. Acharya, J. Ray, T. Patro, P. Alegaonkar, S. Datar, Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology 29(11), 115605 (2018)

    Article  PubMed  Google Scholar 

  101. H.-B. Zhang, W.-G. Zheng, Q. Yan, Z.-G. Jiang, Z.-Z. Yu, The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50(14), 5117–5125 (2012)

    Article  CAS  Google Scholar 

  102. F. Sharif, M. Arjmand, A.A. Moud, U. Sundararaj, E.P.L. Roberts, Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(16), 14171–14179 (2017)

    Article  CAS  PubMed  Google Scholar 

  103. M.C. Vu, D. Mani, J.-B. Kim, T.-H. Jeong, S. Park, G. Murali, I. In, J.-C. Won, D. Losic, C.-S. Lim, S.-R. Kim, Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Compos. A Appl. Sci. Manuf. 149, 106574 (2021)

    Article  CAS  Google Scholar 

  104. H. Zhang, G. Zhang, Q. Gao, M. Zong, M. Wang, J. Qin, Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids. Compos. A Appl. Sci. Manuf. 130, 105773 (2020)

    Article  CAS  Google Scholar 

  105. I. Ibrahim Lakin, Z. Abbas, R.S. Azis, I. Abubakar Alhaji, Complex permittivity and electromagnetic interference shielding effectiveness of OPEFB fiber-polylactic acid filled with reduced graphene oxide. Materials [Online] (2020)

    Google Scholar 

  106. S. Shi, M. Dai, X. Tao, F. Wu, J. Sun, Y. Chen, 3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding. Chem. Eng. J. 450, 138248 (2022)

    Article  CAS  Google Scholar 

  107. S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 95, 119–126 (2016)

    Article  CAS  Google Scholar 

  108. Y. Wang, P. Wang, Z. Du, C. Liu, C. Shen, Y. Wang, Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 5(1), 209–219 (2022)

    Article  CAS  Google Scholar 

  109. S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 8(21), 7962–7972 (2020)

    Article  CAS  Google Scholar 

  110. S. Shi, Z. Peng, J. Jing, L. Yang, Y. Chen, R. Kotsilkova, E. Ivanov, Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing. Ind. Eng. Chem. Res. 59(35), 15565–15575 (2020)

    Article  CAS  Google Scholar 

  111. P. Bhawal, S. Ganguly, T.K. Das, S. Mondal, S. Choudhury, N.C. Das, Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos. B Eng. 134, 46–60 (2018)

    Article  CAS  Google Scholar 

  112. V. Shukla, S.K. Srivastava, Reduced graphene oxide/PdNi/poly(ethylene-co-vinyl acetate) nanocomposites for electromagnetic interference shielding. Mater. Chem. Phys. 276, 125418 (2022)

    Article  CAS  Google Scholar 

  113. N. Bagotia, D.K. Sharma, Exfoliated graphene lead to extraordinary electromagnetic interference shielding of polycarbonate/ethylene methyl acrylate blend nanocomposites. J. Polym. Res. 30(6), 190 (2023)

    Article  CAS  Google Scholar 

  114. N. Bagotia, V. Choudhary, D.K. Sharma, Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. B Eng. 159, 378–388 (2019)

    Article  CAS  Google Scholar 

  115. S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh, N.C. Das, Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77(6), 2923–2943 (2020)

    Article  CAS  Google Scholar 

  116. N. Bagotia, V. Choudhary, D.K. Sharma, Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites. J. Mater. Sci. 53(23), 16047–16061 (2018)

    Article  CAS  Google Scholar 

  117. L. Yang, Y. Chen, M. Wang, S. Shi, J. Jing, Fused deposition modeling 3D printing of novel poly(vinyl alcohol)/graphene nanocomposite with enhanced mechanical and electromagnetic interference shielding properties. Ind. Eng. Chem. Res. 59(16), 8066–8077 (2020)

    Article  CAS  Google Scholar 

  118. A.A. Khodiri, M.Y. Al-Ashry, A.G. El-Shamy, Novel hybrid nanocomposites based on polyvinyl alcohol/graphene/magnetite nanoparticles for high electromagnetic shielding performance. J. Alloy. Compd. 847, 156430 (2020)

    Article  CAS  Google Scholar 

  119. K. Manna, S.K. Srivastava, V. Mittal, Role of enhanced hydrogen bonding of selectively reduced graphite oxide in fabrication of poly(vinyl alcohol) nanocomposites in water as EMI shielding material. J. Phys. Chem. C 120(30), 17011–17023 (2016)

    Article  CAS  Google Scholar 

  120. Y. Yao, S. Jin, M. Wang, F. Gao, B. Xu, X. Lv, Q. Shu, MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding. Appl. Surf. Sci. 578, 152007 (2022)

    Article  CAS  Google Scholar 

  121. S.K. Marka, B. Sindam, K.J. Raju, V.V. Srikanth, Flexible few-layered graphene/poly vinyl alcohol composite sheets: synthesis, characterization and EMI shielding in X-band through the absorption mechanism. RSC Adv. 5(46), 36498–36506 (2015)

    Article  CAS  Google Scholar 

  122. X.-Z. Jin, Z.-Y. Yang, C.-H. Huang, J.-H. Yang, Y. Wang, PEDOT:PSS/MXene/PEG composites with remarkable thermal management performance and excellent HF-band and X-band electromagnetic interference shielding efficiency for electronic packaging. Chem. Eng. J. 448, 137599 (2022)

    Article  CAS  Google Scholar 

  123. N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen, B. Zhang, H. Lv, Z. Wu, D. He, Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64(8), 540–546 (2019)

    Article  CAS  Google Scholar 

  124. Y. Huo, B. Wang, A. Nie, C. Mu, J. Xiang, K. Zhai, T. Xue, F. Wen, Flexible aramid nanofiber/bacterial cellulose/graphene papers with nickel nanoparticles for enhanced electromagnetic interference shielding and joule heating performance. ACS Appl. Nano Mater. 5(4), 5589–5598 (2022)

    Article  CAS  Google Scholar 

  125. M. Das, P.P. Sethy, B. Sundaray, EMI shielding performance of graphene oxide reinforced polyaniline/polystyrene solution cast thin films. Synth. Met. 296, 117369 (2023)

    Article  CAS  Google Scholar 

  126. G.P. Abhilash, D. Sharma, S. Bose, C. Shivakumara, PANI-wrapped BaFe12O19 and SrFe12O19 with rGO composite materials for electromagnetic interference shielding applications. Heliyon 9(3), e13648 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, B. Ahmad, Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Mater. Res. Bull. 157, 112006 (2023)

    Article  CAS  Google Scholar 

  128. X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, Y. Wang, Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity. Compos. Sci. Technol. 136, 104–110 (2016)

    Article  CAS  Google Scholar 

  129. P. Rani, M. Basheer Ahamed, K. Deshmukh, Dielectric and electromagnetic interference shielding performance of graphene nanoplatelets and copper oxide nanoparticles reinforced polyvinylidenefluoride/poly(3,4-ethylenedioxythiophene)-block-poly (ethylene glycol) blend nanocomposites. Synth. Met. 282, 116923 (2021)

    Article  CAS  Google Scholar 

  130. N. Jia, B. Yang, X. Wang, Y. Zuo, P. Chen, R. Xia, J. Miao, Z. Zheng, J. Qian, Y. Ke, W. Zhang, Y. Pan, Composites of an epoxy resin (EP)/PVDF/NiCo-graphene nanosheet (GNS) for electromagnetic shielding. ACS Appl. Nano Mater. 6(9), 7731–7744 (2023)

    Article  CAS  Google Scholar 

  131. M. Xiang, H. Niu, S. Qin, R. Yang, W. Lin, S. Zhou, Z. Yang, S. Dong, Modification of graphene by polypyrrole and ionic liquids for dual-band electromagnetic interference shielding hydrogels. J. Mater. Sci. 57(24), 10983–10996 (2022)

    Article  CAS  Google Scholar 

  132. C. Li, J. Guo, P. Xu, W. Hu, J. Lv, B. Shi, Z. Zhang, R. Li, Facile preparation of superior compressibility and hydrophobic reduced graphene oxide@cellulose nanocrystals/EPDM composites for highly efficient oil/organic solvent adsorption and enhanced electromagnetic interference shielding. Sep. Purif. Technol. 307, 122775 (2023)

    Article  CAS  Google Scholar 

  133. P. Rani, M.B. Ahamed, K. Deshmukh, Structural, dielectric and EMI shielding properties of polyvinyl alcohol/chitosan blend nanocomposites integrated with graphite oxide and nickel oxide nanofillers. J. Mater. Sci.: Mater. Electron. 32(1), 764–779 (2021)

    CAS  Google Scholar 

  134. A. Sadeghi, R. Moeini, J.K. Yeganeh, Highly conductive PP/PET polymer blends with high electromagnetic interference shielding performances in the presence of thermally reduced graphene nanosheets prepared through melt compounding. Polym. Compos. 40(S2), E1461–E1469 (2019)

    Article  CAS  Google Scholar 

  135. P. Das, A.B. Deoghare, S. Ranjan Maity, Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram. Int. 48(8), 11031–11042 (2022)

    Article  CAS  Google Scholar 

  136. J. Zhang, Y. Qi, Y. Zhang, J. Duan, B. Liu, B. Liu, Z. Sun, Y. Xu, W. Hu, N. Zhang, Lignin based flexible electromagnetic shielding pu synergized with graphite. Fibers Polym. 22(1), 1–8 (2021)

    Article  Google Scholar 

  137. A.F. Ahmad, S.A. Aziz, Z. Abbas, S.J. Obaiys, K.A. Matori, M.H. Zaid, H.K. Raad, U.S. Aliyu, Chemically reduced graphene oxide-reinforced poly(lactic acid)/poly(ethylene glycol) nanocomposites: preparation, characterization, and applications in electromagnetic interference shielding. Polymers [Online] (2019)

    Google Scholar 

  138. S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, C.-Y. Yang, S.-C. Lin, R.-B. Yang, Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl. Mater. Interfaces 7(4), 2817–2826 (2015)

    Article  CAS  PubMed  Google Scholar 

  139. W. Yang, H. Bai, B. Jiang, C. Wang, W. Ye, Z. Li, C. Xu, X. Wang, Y. Li, Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 15(11), 9926–9935 (2022)

    Article  CAS  Google Scholar 

  140. S. Ganguly, N. Kanovsky, P. Das, A. Gedanken, S. Margel, Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non-contact heating applications. Adv. Mater. Interfaces 8(23), 2101255 (2021)

    Article  CAS  Google Scholar 

  141. M. Khan, A.N. Khan, A. Saboor, I.H. Gul, Investigating mechanical, dielectric, and electromagnetic interference shielding properties of polymer blends and three component hybrid composites based on polyvinyl alcohol, polyaniline, and few layer graphene. Polym. Compos. 39(10), 3686–3695 (2018)

    Article  CAS  Google Scholar 

  142. G. Huang, J. Gao, X. Wang, H. Liang, C. Ge, How can graphene reduce the flammability of polymer nanocomposites? Mater. Lett. 66(1), 187–189 (2012)

    Article  CAS  Google Scholar 

  143. G. Huang, H. Liang, Y. Wang, X. Wang, J. Gao, Z. Fei, Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater. Chem. Phys. 132(2), 520–528 (2012)

    Article  CAS  Google Scholar 

  144. B. Dittrich, K.-A. Wartig, D. Hofmann, R. Mülhaupt, B. Schartel, Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym. Degrad. Stab. 98(8), 1495–1505 (2013)

    Article  CAS  Google Scholar 

  145. D. Hofmann, K.A. Wartig, R. Thomann, B. Dittrich, B. Schartel, R. Mülhaupt, Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene. Macromol. Mater. Eng. 298(12), 1322–1334 (2013)

    Article  CAS  Google Scholar 

  146. G. Huang, S. Wang, P.A. Song, C. Wu, S. Chen, X. Wang, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos. A: Appl. Sci. Manuf. 59, 18–25 (2014)

    Google Scholar 

  147. B. Yu, X. Wang, X. Qian, W. Xing, H. Yang, L. Ma, Y. Lin, S. Jiang, L. Song, Y. Hu, Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 4(60), 31782–31794 (2014)

    Article  CAS  Google Scholar 

  148. B. Yuan, H. Sheng, X. Mu, L. Song, Q. Tai, Y. Shi, K.M. Liew, Y. Hu, Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J. Mater. Sci. 50, 5389–5401 (2015)

    Article  CAS  Google Scholar 

  149. B. Yuan, A. Fan, M. Yang, X. Chen, Y. Hu, C. Bao, S. Jiang, Y. Niu, Y. Zhang, S. He, H. Dai, The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym. Degrad. Stab. 143, 42–56 (2017)

    Article  CAS  Google Scholar 

  150. B. Yuan, Y. Sun, X. Chen, Y. Shi, H. Dai, S. He, Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos. A Appl. Sci. Manuf. 109, 345–354 (2018)

    Article  CAS  Google Scholar 

  151. G. Trusiano, S. Matta, M. Bianchi, L.G. Rizzi, A. Frache, Evaluation of nanocomposites containing graphene nanoplatelets: mechanical properties and combustion behavior. Polym. Eng. Sci. 59(10), 2062–2071 (2019)

    Article  CAS  Google Scholar 

  152. K. Yang, M. Endoh, R. Trojanowski, R.P. Ramasamy, M.M. Gentleman, T.A. Butcher, M.H. Rafailovich, The thermo-mechanical response of PP nanocomposites at high graphene loading. Nanocomposites 1(3), 126–137 (2015)

    Article  CAS  Google Scholar 

  153. H. Quan, B.-Q. Zhang, Q. Zhao, R.K. Yuen, R.K. Li, Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos. A Appl. Sci. Manuf. 40(9), 1506–1513 (2009)

    Article  Google Scholar 

  154. Z. Cheng, D. Liao, X. Hu, W. Li, C. Xie, H. Zhang, W. Yang, Synergistic fire retardant effect between expandable graphite and ferrocene-based non-phosphorus polymer on polypropylene. Polym. Degrad. Stab. 178, 109201 (2020)

    Article  CAS  Google Scholar 

  155. D.-J. Liao, Q.-K. Xu, R.W. McCabe, H.V. Babu, X.-P. Hu, N. Pan, D.-Y. Wang, T.R. Hull, Ferrocene-based nonphosphorus copolymer: synthesis, high-charring mechanism, and its application in fire retardant epoxy resin. Ind. Eng. Chem. Res. 56(44), 12630–12643 (2017)

    Article  CAS  Google Scholar 

  156. T. Tang, X. Chen, H. Chen, X. Meng, Z. Jiang, W. Bi, Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy. Chem. Mater. 17(11), 2799–2802 (2005)

    Article  CAS  Google Scholar 

  157. J. Li, S. Wang, G. Zhang, H. Li, J. Sun, X. Gu, S. Zhang, Burning behavior analysis of polypropylene composite containing poly-siloxane encapsulated expandable graphite. Polym. Degrad. Stab. 202, 110006 (2022)

    Article  CAS  Google Scholar 

  158. Q. Gao, H. Zhao, X.-L. Zhou, F.-Y. Liu, Y.-H. Jiao, J.-X. Xie, H.-Q. Qu, J.-Z. Xu, H.-Y. Ma, Flame retardant, combustion and thermal degradation properties of polypropylene composites treated with the mixture of pentaerythritol, nickel hydroxystannate and expandable graphite. Polym. Degrad. Stab. 203, 110084 (2022)

    Article  CAS  Google Scholar 

  159. Y. Han, Y. Wu, M. Shen, X. Huang, J. Zhu, X. Zhang, Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J. Mater. Sci. 48, 4214–4222 (2013)

    Article  CAS  Google Scholar 

  160. Z.-M. Zhu, W.-H. Rao, A.-H. Kang, W. Liao, Y.-Z. Wang, Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polym. Degrad. Stab. 154, 1–9 (2018)

    Article  CAS  Google Scholar 

  161. W. Hu, B. Yu, S.-D. Jiang, L. Song, Y. Hu, B. Wang, Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J. Hazard. Mater. 300, 58–66 (2015)

    Article  CAS  PubMed  Google Scholar 

  162. N.H. Thi, T.N. Nguyen, H.T. Oanh, N.T.T. Trang, D.Q. Tham, H.T. Nguyen, T. Van Nguyen, M.H. Hoang, Synergistic effects of aluminum hydroxide, red phosphorus, and expandable graphite on the flame retardancy and thermal stability of polyethylene. J. Appl. Polym. Sci. 138(17), 50317 (2021)

    Article  CAS  Google Scholar 

  163. W. Hu, J. Zhan, X. Wang, N. Hong, B. Wang, L. Song, A.A. Stec, T.R. Hull, J. Wang, Y. Hu, Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene. Ind. Eng. Chem. Res. 53(8), 3073–3083 (2014)

    Article  CAS  Google Scholar 

  164. K. Shen, in Overview of Flame Retardancy and Smoke Suppression of Flexible PVC. Proceedings SPE Vinyltech Conference, Atlanta (2006)

    Google Scholar 

  165. Y.-T. Pan, D.-Y. Wang, One-step hydrothermal synthesis of nano zinc carbonate and its use as a promising substitute for antimony trioxide in flame retardant flexible poly (vinyl chloride). RSC Adv. 5(35), 27837–27843 (2015)

    Article  CAS  Google Scholar 

  166. P. Jia, G. Feng, C. Bo, L. Hu, X. Yang, L. Zhang, M. Zhang, Y. Zhou, A composition of phosphaphenanthrene groups-containing castor-oil-based phosphate plasticizer for PVC: synthesis, characterization and property. J. Ind. Eng. Chem. 60, 192–205 (2018)

    Article  CAS  Google Scholar 

  167. P. Jia, Y. Ma, H. Xia, M. Zheng, G. Feng, L. Hu, M. Zhang, Y. Zhou, Clean synthesis of epoxidized tung oil derivatives via phase transfer catalyst and thiol–ene reaction: a detailed study. ACS Sustain. Chem. Eng. 6(11), 13983–13994 (2018)

    Article  CAS  Google Scholar 

  168. V. Najafi, H. Abdollahi, Internally plasticized PVC by four different green plasticizer compounds. Eur. Polymer J. 128, 109620 (2020)

    Article  CAS  Google Scholar 

  169. L. Han, W. Wu, H. Qu, X. Han, A. Wang, Y. Jiao, J. Xu, Metallic ferrites as flame retardants and smoke suppressants in flexible poly (vinyl chloride). J. Therm. Anal. Calorim. 123, 293–300 (2016)

    Article  CAS  Google Scholar 

  170. S. He, W. Wu, M. Zhang, H. Han, Y. Jiao, H. Qu, J. Xu, Reduction in smoke emitted and fire hazard presented by flexible poly (vinyl chloride) through novel synthesis of SnO2 supported by activated carbon spheres. Polym. Adv. Technol. 29(9), 2505–2514 (2018)

    Article  CAS  Google Scholar 

  171. Y.-T. Pan, M. Castillo-Rodríguez, D.-Y. Wang, Mesoporous metal oxide/pyrophosphate hybrid originated from reutilization of water treatment resin as a novel fire hazard suppressant. Mater. Chem. Phys. 203, 49–57 (2018)

    Article  CAS  Google Scholar 

  172. C. Cullis, M. Hirschler, Q. Tao, Studies of the effects of phosphorus-nitrogen-bromine systems on the combustion of some thermoplastic polymers. Eur. Polymer J. 27(3), 281–289 (1991)

    Article  CAS  Google Scholar 

  173. Y. Li, L. Lv, W. Wang, J. Zhang, J. Lin, J. Zhou, M. Dong, Y. Gan, I. Seok, Z. Guo, Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: flame retardancy and mechanical properties. Polymer 190, 122198 (2020)

    Article  Google Scholar 

  174. H. Qu, C. Liu, W. Wu, L. Chen, J. Xu, Using cone calorimeter to study thermal degradation of flexible PVC filled with zinc ferrite and Mg (OH) 2. J. Therm. Anal. Calorim. 115, 1081–1087 (2014)

    Article  CAS  Google Scholar 

  175. H. Pi, S. Guo, Y. Ning, Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate–aluminum trihydrate-filled poly (vinyl chloride). J. Appl. Polym. Sci. 89(3), 753–762 (2003)

    Article  CAS  Google Scholar 

  176. K. Yao, J. Gong, N. Tian, Y. Lin, X. Wen, Z. Jiang, H. Na, T. Tang, Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe 3 O 4 nanoparticles. RSC Adv. 5(40), 31910–31919 (2015)

    Article  CAS  Google Scholar 

  177. Z. Huang, Z. Wang, Synthesis of a copper hydroxystannate modified graphene oxide nanohybrid and its high performance in flexible polyvinyl chloride with simultaneously improved flame retardancy, smoke suppression and mechanical properties. Polym. Degrad. Stab. 183, 109425 (2021)

    Article  CAS  Google Scholar 

  178. S. Pappalardo, P. Russo, D. Acierno, S. Rabe, B. Schartel, The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur. Polymer J. 76, 196–207 (2016)

    Article  CAS  Google Scholar 

  179. B. Zirnstein, W. Tabaka, D. Frasca, D. Schulze, B. Schartel, Graphene/hydrogenated acrylonitrile-butadiene rubber nanocomposites: dispersion, curing, mechanical reinforcement, multifunctional filler. Polym. Test. 66, 268–279 (2018)

    Article  CAS  Google Scholar 

  180. H. Qu, W. Wu, J. Xie, J. Xu, Zinc hydroxystannate-coated metal hydroxides as flame retardant and smoke suppression for flexible poly vinyl chloride. Fire Mater. Int. J. 33(4), 201–210 (2009)

    Article  CAS  Google Scholar 

  181. S.V. Levchik, E.D. Weil, Combustion and fire retardancy of aliphatic nylons. Wiley Online Library (2000)

    Google Scholar 

  182. P. Gijsman, R. Steenbakkers, C. Fürst, J. Kersjes, Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66. Polym. Degrad. Stab. 78(2), 219–224 (2002)

    Article  CAS  Google Scholar 

  183. M.A. Uddin, T. Bhaskar, J. Kaneko, A. Muto, Y. Sakata, T. Matsui, Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC). Fuel 81(14), 1819–1825 (2002)

    Article  CAS  Google Scholar 

  184. P. Kiliaris, C. Papaspyrides, Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 35(7), 902–958 (2010)

    Article  CAS  Google Scholar 

  185. X. Hao, G. Gai, J. Liu, Y. Yang, Y. Zhang, C.-W. Nan, Flame retardancy and antidripping effect of OMT/PA nanocomposites. Mater. Chem. Phys. 96(1), 34–41 (2006)

    Article  CAS  Google Scholar 

  186. D. Tabuani, S. Ceccia, G. Camino, Nylon-6 nanocomposites, study of the influence of the nanofiller nature on morphology and material properties. J. Polym. Sci., Part B: Polym. Phys. 47(19), 1935–1948 (2009)

    Article  CAS  Google Scholar 

  187. N. Hong, L. Song, T.R. Hull, A.A. Stec, B. Wang, Y. Pan, Y. Hu, Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Mater. Chem. Phys. 142(2), 531–538 (2013)

    Article  CAS  Google Scholar 

  188. B.M. Güell, I. Babich, L. Lefferts, K. Seshan, Steam reforming of phenol over Ni-based catalysts–A comparative study. Appl. Catal. B 106(3–4), 280–286 (2011)

    Article  Google Scholar 

  189. C.K. Kundu, Z. Li, X. Li, Z. Zhang, Y. Hu, Graphene oxide functionalized biomolecules for improved flame retardancy of Polyamide 66 fabrics with intact physical properties. Int. J. Biol. Macromol. 156, 362–371 (2020)

    Article  CAS  PubMed  Google Scholar 

  190. B. Yuan, Y. Hu, X. Chen, Y. Shi, Y. Niu, Y. Zhang, S. He, H. Dai, Dual modification of graphene by polymeric flame retardant and Ni (OH) 2 nanosheets for improving flame retardancy of polypropylene. Compos. A Appl. Sci. Manuf. 100, 106–117 (2017)

    Article  CAS  Google Scholar 

  191. F. Seidi, E. Movahedifar, G. Naderi, V. Akbari, F. Ducos, R. Shamsi, H. Vahabi, M.R. Saeb, Flame retardant polypropylenes: a review. Polymers (Basel) 12(8) (2020)

    Google Scholar 

  192. C. Bao, Y. Guo, B. Yuan, Y. Hu, L. Song, Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J. Mater. Chem. 22(43), 23057–23063 (2012)

    Article  CAS  Google Scholar 

  193. D. Marset, E. Fages, E. Gonga, J. Ivorra-Martinez, L. Sánchez-Nacher, L. Quiles-Carrillo, Development and characterization of high environmentally friendly composites of bio-based polyamide 1010 with enhanced fire retardancy properties by expandable graphite. Polymers 14(9), 1843 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. G. Huang, S. Chen, S. Tang, J. Gao, A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135(2), 938–947 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, S.S., Temane, L.T., Orasugh, J.T. (2024). Applications. In: Graphene-Bearing Polymer Composites. Springer Series in Materials Science, vol 340. Springer, Cham. https://doi.org/10.1007/978-3-031-51924-6_7

Download citation

Publish with us

Policies and ethics