Skip to main content

Plant-Based Proteins: Plant Source, Extraction, Food Applications, and Challenges

  • Chapter
  • First Online:
Flavor-Associated Applications in Health and Wellness Food Products
  • 204 Accesses

Abstract

Protein ingredients, originating from both animal and plant sources, play a crucial role in the food industry due to their nutritional and functional properties. Despite the long-standing preference for animal protein, a shift toward plant proteins has been observed due to their potential health benefits, lower environmental impact, and increasing concerns about animal welfare. Various plant sources, such as cereals, legumes, oilseeds, nuts, tubers, and other seeds, have been explored for their protein content, with a focus on their respective protein’s solubility and other functional attributes, which influence their application in diverse food products. While plant protein offers certain nutritional benefits, including dietary fiber, vitamins, minerals, and phytochemicals, it faces challenges with regard to its replacement of animal protein due to inferior protein quality, bioavailability, and antinutritional factors. Functional differences and unfavorable flavor attributes also pose challenges. However, various solutions, such as combining different plant proteins, heat application, and food processing techniques, are being investigated to mitigate these issues. This chapter provides a comprehensive overview of the plant sources, extraction methods, food applications, challenges, and potential solutions in the development of plant-based protein products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JR, Falvo MJ. Protein – which is best? J Sports Sci Med. 2004;3(3):118–30.

    PubMed  PubMed Central  Google Scholar 

  2. Samaranayaka A. Lentil. In: Sustainable protein sources. Elsevier; 2017. p. 185–96. https://doi.org/10.1016/B978-0-12-802778-3.00011-1.

    Chapter  Google Scholar 

  3. Päivärinta E, Itkonen ST, Pellinen T, Lehtovirta M, Erkkola M, Pajari AM. Replacing animal-based proteins with plant-based proteins changes the composition of a whole nordic diet—a randomised clinical trial in healthy Finnish adults. Nutrients. 2020;12(4). https://doi.org/10.3390/nu12040943.

  4. Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–92. https://doi.org/10.1016/S0140-6736(18)31788-4.

    Article  PubMed  Google Scholar 

  5. Alemayehu FR, Bendevis MA, Jacobsen SE. The potential for utilizing the seed crop amaranth (amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci. 2015;201(5):321–9. https://doi.org/10.1111/jac.12108.

    Article  CAS  Google Scholar 

  6. López DN, Galante M, Robson M, Boeris V, Spelzini D. Amaranth, quinoa and chia protein isolates: physicochemical and structural properties. Int J Biol Macromol. 2018;109:152–9. https://doi.org/10.1016/j.ijbiomac.2017.12.080.

    Article  CAS  PubMed  Google Scholar 

  7. Mattila P, Mäkinen S, Eurola M, et al. Nutritional value of commercial protein-rich plant products. Plant Foods Hum Nutr. 2018;73(2):108–15. https://doi.org/10.1007/s11130-018-0660-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coda R, Varis J, Verni M, Rizzello CG, Katina K. Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT-Food Sci Technol. 2017;82:296–302. https://doi.org/10.1016/j.lwt.2017.04.062.

    Article  CAS  Google Scholar 

  9. Ahnen RT, Jonnalagadda SS, Slavin JL. Role of plant protein in nutrition, wellness, and health. Nutr Rev. 2019;77(11):735–47. https://doi.org/10.1093/nutrit/nuz028.

    Article  PubMed  Google Scholar 

  10. Vandenplas Y, De Mulder N, De Greef E, Huysentruyt K. Plant-based formulas and liquid feedings for infants and toddlers. Nutrients. 2021;13(11):4026. https://doi.org/10.3390/nu13114026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarni AR, Baroni L. Milk and Parkinson disease: could galactose be the missing link? Med J Nutrition Metab. 2019;12(1):91–118. https://doi.org/10.3233/MNM-180234.

    Article  Google Scholar 

  12. Goel R, Kaur A, Singh J. Impact of agribusiness on food security and livelihood generation: a case study in Assam, India. Asian J Dairy Food Res. 2018; https://doi.org/10.18805/ajdfr.DR-1220.

  13. Phongthai S, Homthawornchoo W, Rawdkuen S. Preparation, properties and application of rice bran protein: a review: Int Food Res J. 2017;24.

    Google Scholar 

  14. Zeidan AA, Poulsen VK, Janzen T, et al. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017;41. https://doi.org/10.1093/FEMSRE/FUX017.

  15. Sun-Waterhouse D, Zhao M, Waterhouse GIN. Protein modification during ingredient preparation and food processing: approaches to improve food processability and nutrition. Food Bioprocess Technol. 2014;7(7):1853–93. https://doi.org/10.1007/s11947-014-1326-6.

    Article  CAS  Google Scholar 

  16. Rehman Z, Shah WH. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chem. 2005;91(2):327–31. https://doi.org/10.1016/j.foodchem.2004.06.019.

    Article  CAS  Google Scholar 

  17. Mondor M, Aksay S, Drolet H, Roufik S, Farnworth E, Boye JI. Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innov Food Sci Emerg Technol. 2009;10(3):342–7. https://doi.org/10.1016/j.ifset.2009.01.007.

    Article  CAS  Google Scholar 

  18. Akharume FU, Aluko RE, Adedeji AA. Modification of plant proteins for improved functionality: a review. Compr Rev Food Sci Food Saf. 2021;20(1):198–224. https://doi.org/10.1111/1541-4337.12688.

    Article  CAS  PubMed  Google Scholar 

  19. Xu M, Jin Z, Gu Z, Rao J, Chen B. Changes in odor characteristics of pulse protein isolates from germinated chickpea, lentil, and yellow pea: role of lipoxygenase and free radicals. Food Chem. 2020;314:126184. https://doi.org/10.1016/j.foodchem.2020.126184.

    Article  CAS  PubMed  Google Scholar 

  20. Lan Y, Xu M, Ohm JB, Chen B, Rao J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem. 2019;278:665–73. https://doi.org/10.1016/j.foodchem.2018.11.074.

    Article  CAS  PubMed  Google Scholar 

  21. Wakasa Y, Takaiwa F. Seed storage proteins. In: Brenner’s encyclopedia of genetics. 2nd ed . Published online; 2013. p. 346–8. https://doi.org/10.1016/B978-0-12-374984-0.01378-4.

    Chapter  Google Scholar 

  22. Kumar M, Tomar M, Potkule J, et al. Advances in the plant protein extraction: mechanism and recommendations. Food Hydrocoll. 2021:115. https://doi.org/10.1016/j.foodhyd.2021.106595.

  23. Guerrieri N, Cavaletto M. Cereals proteins. In: Proteins in food processing. Elsevier; 2018. p. 254–85. https://doi.org/10.1016/B978-0-08-100722-8.00009-7.

    Chapter  Google Scholar 

  24. Tzitzikas EN, Vincken JP, De Groot J, Gruppen H, Visser RGF. Genetic variation in pea seed globulin composition. J Agric Food Chem. 2006;54(2):425–33. https://doi.org/10.1021/jf0519008.

    Article  CAS  PubMed  Google Scholar 

  25. Wang N, Hatcher DW, Tyler RT, Toews R, Gawalko EJ. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res Int. 2010;43(2):589–94. https://doi.org/10.1016/j.foodres.2009.07.012.

    Article  CAS  Google Scholar 

  26. Gujska E, Khan K. High temperature extrusion effects on protein solubility and distribution in navy and pinto beans. J Food Sci. 1991;56(4):1013–6. https://doi.org/10.1111/j.1365-2621.1991.tb14629.x.

    Article  CAS  Google Scholar 

  27. Koehler HH, Chang I, Scheier G, Burke DW. Nutrient composition, protein quality, and sensory properties of thirty-six cultivars of dry beans (Phaseolus Vulgaris L). J Food Sci. 52(5):1335–40.

    Google Scholar 

  28. Sreerama YN, Sashikala VB, Pratape VM, Singh V. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their flour functionality. Food Chem. 2012;131(2):462–8. https://doi.org/10.1016/j.foodchem.2011.09.008.

    Article  CAS  Google Scholar 

  29. Ghumman A, Kaur A, Singh N. Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines. LWT-Food Sci Technol. 2016;65:137–44. https://doi.org/10.1016/j.lwt.2015.07.075.

    Article  CAS  Google Scholar 

  30. Rumiyati R, James AP, Jayasena V. Effect of germination on the nutritional and protein profile of Australian sweet lupin (Lupinus angustifolius L.). Food Nutr Sci. 2012;03(05):621–6. https://doi.org/10.4236/fns.2012.35085.

    Article  CAS  Google Scholar 

  31. Warsame AO, O’Sullivan DM, Tosi P. Seed storage proteins of faba bean (Vicia faba L): current status and prospects for genetic improvement. J Agric Food Chem. 2018;66(48):12617–26. https://doi.org/10.1021/acs.jafc.8b04992.

    Article  CAS  PubMed  Google Scholar 

  32. Prakash V, Narasinga Rao MS. Physicochemical properties of oilseed proteins. Crit Rev Biochem. 1986;20(3):265–363. https://doi.org/10.3109/10409238609083736.

    Article  CAS  Google Scholar 

  33. Wanasundara JPD, McIntosh TC, Perera SP, Withana-Gamage TS, Mitra P. Canola/rapeseed protein-functionality and nutrition OCL. 2016;23(4). https://doi.org/10.1051/ocl/2016028.

  34. Rabetafika HN, Van Remoortel V, Danthine S, Paquot M, Blecker C. Flaxseed proteins: food uses and health benefits. Int J Food Sci Technol. 2011;46(2):221–8. https://doi.org/10.1111/j.1365-2621.2010.02477.x.

    Article  CAS  Google Scholar 

  35. Leonard W, Zhang P, Ying D, Fang Z. Hempseed in food industry: nutritional value, health benefits, and industrial applications. Compr Rev Food Sci Food Saf. 2020;19(1):282–308. https://doi.org/10.1111/1541-4337.12517.

    Article  PubMed  Google Scholar 

  36. Bedigian D. Molecular biotechnology of sesame. In: Sesame: the genus sesamum. CRC Press; 2010. p. 219–44.

    Chapter  Google Scholar 

  37. Rezig L, Chouaibi M, Msaada K, Hamdi S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crop Prod. 2012;37(1):82–7. https://doi.org/10.1016/j.indcrop.2011.12.004.

    Article  CAS  Google Scholar 

  38. Ahrens S, Venkatachalam M, Mistry AM, Lapsley K, Sathe SK. Almond (Prunus dulcis L.) protein quality. Plant Foods Hum Nutr. 2005;60(3):123–8. https://doi.org/10.1007/s11130-005-6840-2.

    Article  CAS  PubMed  Google Scholar 

  39. Hernández-Alonso P, Bulló M, Salas-Salvadó J. Pistachios for health: what do we know about this multifaceted nut? Nutr Today. 2016;51(3):133–8. https://doi.org/10.1097/NT.0000000000000160.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ogunwolu S., Henshaw F., Mock H., Matros A. Production of protein concentrate and isolate from cashew (Anacardium occidentale L.) nut. Afr J Food Agric Nutr Dev. 2010;10(5). https://doi.org/10.4314/ajfand.v10i5.56334.

  41. Sze-Tao KWC, Sathe SK. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J Sci Food Agric. 2000;80(9):1393–401. https://doi.org/10.1002/1097-0010(200007)80:9<1393::AID-JSFA653>3.0.CO;2-F.

    Article  CAS  Google Scholar 

  42. Mir NA, Riar CS, Singh S. Nutritional constituents of pseudo cereals and their potential use in food systems: a review. Trends Food Sci Technol. 2018;75(January):170–80. https://doi.org/10.1016/j.tifs.2018.03.016.

    Article  CAS  Google Scholar 

  43. Grancieri M, Martino HSD, Gonzalez de Mejia E. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Compr Rev Food Sci Food Saf. 2019;18(2):480–99. https://doi.org/10.1111/1541-4337.12423.

    Article  CAS  PubMed  Google Scholar 

  44. Bojórquez-Velázquez E, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, De La Rosa APB. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC Plant Biol. 2019;19(1). https://doi.org/10.1186/s12870-019-1656-7.

  45. Wichrowska D, Szczepanek M. Possibility of limiting mineral fertilization in potato cultivation by using bio-fertilizer and its influence on protein content in potato tubers. Agric. 2020;10(10):1–16. https://doi.org/10.3390/agriculture10100442.

    Article  CAS  Google Scholar 

  46. Shewry PR. Tuber storage proteins. Ann Bot. 2003;91(7):755–69. https://doi.org/10.1093/aob/mcg084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gangopadhyay N, Hossain M, Rai D, Brunton N. A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules. 2015;20(6):10884–909. https://doi.org/10.3390/molecules200610884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cozzolino D. An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res Int. 2014;60:262–5. https://doi.org/10.1016/j.foodres.2013.08.034.

    Article  CAS  Google Scholar 

  49. Delcour JA, Hoseney RC. Principles of cereal science and technology. 3rd ed. AACC International; 2010.

    Book  Google Scholar 

  50. Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot. 2002;53:947–58. https://academic.oup.com/jxb/article/53/370/947/537249

    Article  CAS  PubMed  Google Scholar 

  51. Sudheesh C, Bhat ZR, Aaliya B, Sunooj KV. Cereal proteins. In: Nutraceuticals and health care. Elsevier; 2022. p. 29–60. https://doi.org/10.1016/B978-0-323-89779-2.00010-7.

    Chapter  Google Scholar 

  52. Mäkinen OE, Sozer N, Ercili-Cura D, Poutanen K. Protein from oat. In: Sustainable protein sources. Elsevier; 2017. p. 105–19. https://doi.org/10.1016/B978-0-12-802778-3.00006-8.

    Chapter  Google Scholar 

  53. Ruiz M, Giraldo P. The influence of allelic variability of prolamins on gluten quality in durum wheat: an overview. J Cereal Sci. 2021;101:103304. https://doi.org/10.1016/j.jcs.2021.103304.

    Article  CAS  Google Scholar 

  54. Shewry PR. Cereal grain proteins. In: Cereal grain quality. Netherlands: Springer; 1996. p. 227–50. https://doi.org/10.1007/978-94-009-1513-8_8.

    Chapter  Google Scholar 

  55. Joye I. Protein digestibility of cereal products Foods. 2019;8(6). https://doi.org/10.3390/foods8060199.

  56. Boye J, Wijesinha-Bettoni R, Burlingame B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr. 2012;108(S2):S183–211. https://doi.org/10.1017/S0007114512002309.

    Article  CAS  PubMed  Google Scholar 

  57. Duodu K, Taylor JR, Belton P, Hamaker B. Factors affecting sorghum protein digestibility. J Cereal Sci. 2003;38(2):117–31. https://doi.org/10.1016/S0733-5210(03)00016-X.

    Article  CAS  Google Scholar 

  58. Han F, Han F, Wang Y, et al. Digestible indispensable amino acid scores of nine cooked cereal grains. Br J Nutr. 2019;121(1):30–41. https://doi.org/10.1017/S0007114518003033.

    Article  CAS  PubMed  Google Scholar 

  59. Morey DD, Evans J. Amino acid composition of six grains and winter wheat forage. Cereal Chem. 1983;60(6):461–4.

    CAS  Google Scholar 

  60. Heiniö R-L. Sensory attributes of bakery products. In: Bakery products science and technology. Wiley; 2014. p. 391–407. https://doi.org/10.1002/9781118792001.ch22.

    Chapter  Google Scholar 

  61. Parker JK, Hassell GME, Mottram DS, Guy RCE. Sensory and instrumental analyses of volatiles generated during the extrusion cooking of oat flours. J Agric Food Chem. 2000;48(8):3497–506. https://doi.org/10.1021/jf991302r.

    Article  CAS  PubMed  Google Scholar 

  62. Klensporf D, Jeleń HH. Effect of heat treatment on the flavor of oat flakes. J Cereal Sci. 2008;48(3):656–61. https://doi.org/10.1016/j.jcs.2008.02.005.

    Article  CAS  Google Scholar 

  63. Staniak M, Ksiak J, Bojarszczuk J. Mixtures of legumes with cereals as a source of feed for animals. In: Organic agriculture towards sustainability. InTech; 2014. https://doi.org/10.5772/58358.

    Chapter  Google Scholar 

  64. Kouris-Blazos A, Belski R. Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac J Clin Nutr. 2016;25(1):1–17. https://doi.org/10.6133/apjcn.2016.25.1.23.

    Article  CAS  PubMed  Google Scholar 

  65. Yorgancilar M, Bilgiçli N. Chemical and nutritional changes in bitter and sweet lupin seeds (Lupinus albus L.) during bulgur production. J Food Sci Technol. 2014;51(7):1384–9. https://doi.org/10.1007/s13197-012-0640-0.

    Article  CAS  PubMed  Google Scholar 

  66. Phillips RD. Starchy legumes in human nutrition, health and culture. Plant Foods Hum Nutr. 1993;44(3):95–211.

    Article  CAS  Google Scholar 

  67. Mlyneková Z, Chrenková M, Formelová Z. Cereals and legumes in nutrition of people with celiac disease. Int J Celiac Dis. 2014;2(3):105–9. https://doi.org/10.12691/ijcd-2-3-3.

    Article  Google Scholar 

  68. Klupšaitė D, Juodeikienė G. Legume: composition, protein extraction and functional properties. A review. Chem Technol. 2015;66(1). https://doi.org/10.5755/j01.ct.66.1.12355.

  69. Roy F, Boye JI, Simpson BK. Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int. 2010;43(2):432–42. https://doi.org/10.1016/j.foodres.2009.09.002.

    Article  CAS  Google Scholar 

  70. Singhal A, Karaca AC, Tyler R, Nickerson M. Pulse proteins: from processing to structure-function relationships. In: Grain legumes. InTech; 2016. https://doi.org/10.5772/64020.

    Chapter  Google Scholar 

  71. Dandamudi A, Tommie J, Nommsen-Rivers L, Couch S. Dietary patterns and breast cancer risk: a systematic review. Anticancer Res. 2018;38(6):3209–22. https://doi.org/10.21873/anticanres.12586.

    Article  PubMed  Google Scholar 

  72. Margier M, Georgé S, Hafnaoui N, et al. Nutritional composition and bioactive content of legumes: characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients. 2018;10(11):1668. https://doi.org/10.3390/nu10111668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roland WSU, Pouvreau L, Curran J, Van De Velde F, De Kok PMT. Flavor aspects of pulse ingredients. Cereal Chem. 2017;94(1):58–65. https://doi.org/10.1094/CCHEM-06-16-0161-FI.

    Article  CAS  Google Scholar 

  74. Karolkowski A, Guichard E, Briand L, Salles C. Volatile compounds in pulses: a review. Foods. 2021;10(12):3140. https://doi.org/10.3390/foods10123140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Oilseed proteins – properties and application as a food ingredient. Trends Food Sci Technol. 2020;106:160–70. https://doi.org/10.1016/j.tifs.2020.10.004.

    Article  CAS  Google Scholar 

  76. Alzagtat AA, Alli I. Protein-lipid interactions in food systems: a review. Int J Food Sci Nutr. 2002;53(3):249–60. https://doi.org/10.1080/09637480220132850.

    Article  CAS  PubMed  Google Scholar 

  77. Bekhit AEDA, Shavandi A, Jodjaja T, et al. Flaxseed: composition, detoxification, utilization, and opportunities. Biocatal Agric Biotechnol. 2018;13:129–52. https://doi.org/10.1016/j.bcab.2017.11.017.

    Article  Google Scholar 

  78. Kaushik P, Dowling K, McKnight S, Barrow CJ, Wang B, Adhikari B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016;197:212–20. https://doi.org/10.1016/j.foodchem.2015.09.106.

    Article  CAS  PubMed  Google Scholar 

  79. Aiello G, Fasoli E, Boschin G, et al. Proteomic characterization of hempseed (Cannabis sativa L.). J Proteome. 2016;147:187–96. https://doi.org/10.1016/j.jprot.2016.05.033.

    Article  CAS  Google Scholar 

  80. Malomo SA, He R, Aluko RE. Structural and functional properties of hemp seed protein products. J Food Sci. 2014;79(8):C1512–21. https://doi.org/10.1111/1750-3841.12537.

    Article  CAS  PubMed  Google Scholar 

  81. Rezig L, Chibani F, Chouaibi M, et al. Pumpkin (Cucurbita Maxima) seed proteins: sequential extraction processing and fraction characterization. J Agric Food Chem. 2013;61(32):7715–21. https://doi.org/10.1021/jf402323u.

    Article  CAS  PubMed  Google Scholar 

  82. Bucko SD, Katona JM, Popovic LM, Vaštag ŽG, Petrovic LB. Functional properties of pumpkin (Cucurbita pepo) seed protein isolate and hydrolysate. J Serbian Chem Soc. 2016;81(1):35–46. https://doi.org/10.2298/JSC150615081B.

    Article  CAS  Google Scholar 

  83. Raikos V, Neacsu M, Duthie G, et al. Proteomic and glucosinolate profiling of rapeseed isolates from meals produced by different oil extraction processes. J Food Process Preserv. 2017;41(4). https://doi.org/10.1111/jfpp.13060.

  84. Achouri A, Nail V, Boye JI. Sesame protein isolate: fractionation, secondary structure and functional properties. Food Res Int. 2012;46(1):360–9. https://doi.org/10.1016/j.foodres.2012.01.001.

    Article  CAS  Google Scholar 

  85. Saatchi A, Kiani H, Labbafi M. A new functional protein-polysaccharide conjugate based on protein concentrate from sesame processing by-products: functional and physico-chemical properties. Int J Biol Macromol. 2019;122:659–66. https://doi.org/10.1016/j.ijbiomac.2018.10.122.

    Article  CAS  PubMed  Google Scholar 

  86. Zilic S, Barac M, Pesic M, et al. Characterization of sunflower seed and kernel proteins. Helia. 2010;33(52):103–13. https://doi.org/10.2298/HEL1052103Z.

    Article  Google Scholar 

  87. Aider M, Barbana C. Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity - a practical and critical review. Trends Food Sci Technol. 2011;22(1):21–39. https://doi.org/10.1016/j.tifs.2010.11.002.

    Article  CAS  Google Scholar 

  88. Zhong Y, Wan Y-W, Pang K, Chow LM, Liu Z. Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics. 2013;14(1):89. https://doi.org/10.1186/1471-2105-14-89.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhou R. The flavoring composition of sesame aroma oil. J Chin Cereal Oils Assoc. 2006;21(3):310–5.

    CAS  Google Scholar 

  90. Lou F, Liu Y, Sun X, Pan Y, Zhao J, Zhao J. Identification of volatile flavor components in peanut butter. J Food Sci. 2009:393–6.

    Google Scholar 

  91. Yan Q. Studies on volatile components of roasted sesame. Food Ind Sci Technol. 2018;35(3):245–7.

    Google Scholar 

  92. Zhou PP, Huang JH, Song ZH, Wang XG. Identification of volatile flavor compounds of sunflower oil. Sci Technol Food Ind. 2012;33(14):128–31.

    Google Scholar 

  93. Hong Z, Chen J, Fan L. Analysis of volatile substances in cold-pressed and hot-pressed sunflower seed oil by HS-SPME-GC-MS. China Oils Fats. 2015;40(2):90–4.

    CAS  Google Scholar 

  94. Xu X. Study on the changes of fatty acids and volatile components in the oxidation of vegetable oils. Zhejiang Gongshang Univ Hangzhou. Published online; 2013.

    Google Scholar 

  95. Ivanova-Petropulos V, Mitrev S, Stafilov T, et al. Characterisation of traditional Macedonian edible oils by their fatty acid composition and their volatile compounds. Food Res Int. 2015;77:506–14. https://doi.org/10.1016/j.foodres.2015.08.014.

    Article  CAS  Google Scholar 

  96. Qiu HQ, Chen D, Liu WH. Study on volatile components of rapeseed oil by solvent distillation gas chromatography-mass spectrometry. Zhejiang Chem Ind. 2009;40(1):21–3.

    Google Scholar 

  97. Ros E, Mataix J. Fatty acid composition of nuts – implications for cardiovascular health. Br J Nutr. 2006;96(Suppl 2). https://doi.org/10.1017/BJN20061861.

  98. Brufau G, Boatella J, Rafecas M. Nuts: source of energy and macronutrients. Br J Nutr. 2006;96(Suppl 2). https://doi.org/10.1017/BJN20061860.

  99. Venkatachalan M, Sathe SK. Chemical composition of selected edible nut seeds. J Agric Food Chem. 2006;54(13):4705–14. https://doi.org/10.1021/jf0606959.

    Article  CAS  Google Scholar 

  100. Valdés GA, Sánchez Romero R, Juan Polo A, Prats Moya S, Maestre Pérez SE, Beltrán SA. Volatile profile of nuts, key odorants and analytical methods for quantification. Foods. 2021;10(7):1611. https://doi.org/10.3390/foods10071611.

    Article  CAS  Google Scholar 

  101. Elsohaimy SA, Refaay TM, Zaytoun MAM. Physicochemical and functional properties of quinoa protein isolate. Ann Agric Sci. 2015;60(2):297–305. https://doi.org/10.1016/j.aoas.2015.10.007.

    Article  Google Scholar 

  102. Hirose Y, Fujita T, Ishii T, Ueno N. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem. 2010;119(4):1300–6. https://doi.org/10.1016/j.foodchem.2009.09.008.

    Article  CAS  Google Scholar 

  103. FAO. Food and Agriculture Organization of the United States. 2012.

    Google Scholar 

  104. Repo-Carrasco R, Espinoza C, Jacobsen S-E. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int. 2003;19(1–2):179–89. https://doi.org/10.1081/FRI-120018884.

    Article  Google Scholar 

  105. Nowak V, Du J, Charrondière UR. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016;193:47–54. https://doi.org/10.1016/j.foodchem.2015.02.111.

    Article  CAS  PubMed  Google Scholar 

  106. Valencia-Chamorro SA. Quinoa. In: Encyclopedia of food sciences and nutrition. Elsevier; 2003. p. 4895–902. https://doi.org/10.1016/B0-12-227055-X/00995-0.

    Chapter  Google Scholar 

  107. Dakhili S, Abdolalizadeh L, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L. Quinoa protein: composition, structure and functional properties. Food Chem. 2019;299:125161. https://doi.org/10.1016/j.foodchem.2019.125161.

    Article  CAS  PubMed  Google Scholar 

  108. Ruales J, Nair BM. Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods Hum Nutr. 1992;42(1):1–11. https://doi.org/10.1007/BF02196067.

    Article  CAS  PubMed  Google Scholar 

  109. Bhargava A, Shukla S, Ohri D. Chenopodium quinoa—an Indian perspective. Ind Crop Prod. 2006;23(1):73–87. https://doi.org/10.1016/j.indcrop.2005.04.002.

    Article  CAS  Google Scholar 

  110. Kozioł MJ. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Compos Anal. 1992;5(1):35–68. https://doi.org/10.1016/0889-1575(92)90006-6.

    Article  Google Scholar 

  111. Craine EB, Murphy KM. Seed composition and amino acid profiles for quinoa grown in Washington state. Front Nutr. 2020;7. https://doi.org/10.3389/fnut.2020.00126.

  112. Yang X, Zhu K, Guo H, et al. Characterization of volatile compounds in differently coloured Chenopodium quinoa seeds before and after cooking by headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2021;348:129086. https://doi.org/10.1016/j.foodchem.2021.129086.

    Article  CAS  PubMed  Google Scholar 

  113. Pripi-Nicolau L, De Revel G, Bertrand A, Maujean A. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. J Agric Food Chem. 2000;48(9):3761–6. https://doi.org/10.1021/jf991024w.

    Article  CAS  Google Scholar 

  114. Xiao L, Lee J, Zhang G, et al. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014;151:31–9. https://doi.org/10.1016/j.foodchem.2013.11.052.

    Article  CAS  PubMed  Google Scholar 

  115. Prestamo G, Pedrazuela A, Penas E, Lasunción MA, Arroyo G. Role of buckwheat diet on rats as prebiotic and healthy food. Nutr Res. 2003;23(6):803–14. https://doi.org/10.1016/S0271-5317(03)00074-5.

    Article  CAS  Google Scholar 

  116. Tahir I, Farooq S. Grain composition in some buckwheat cultivars (Fagopyrum Spp.) with particular reference to protein fractions. Qual Plant Plant Foods Hum Nutr. 1985;35(2):153–8. https://doi.org/10.1007/BF01092131.

    Article  CAS  Google Scholar 

  117. Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003;80(1):9–15. https://doi.org/10.1016/S0308-8146(02)00228-5.

    Article  CAS  Google Scholar 

  118. Ahmed A, Khalid N, Ahmad A, Abbasi NA, Latif MSZ, Randhawa MA. Phytochemicals and biofunctional properties of buckwheat: a review. J Agric Sci. 2014;152(3):349–69. https://doi.org/10.1017/S0021859613000166.

    Article  CAS  Google Scholar 

  119. Ikeda K, Kishida M. Digestibility of proteins in buckwheat seed. Fagopyrum. 1993;13:21–4.

    Google Scholar 

  120. Wei Y, Hu X, Zhang G, Ouyang S. Studies on the amino acid and mineral content of buckwheat protein fractions. Nahrung/Food. 2003;47(2):114–6. https://doi.org/10.1002/food.200390020.

    Article  CAS  PubMed  Google Scholar 

  121. Liu C-L, Chen Y-S, Yang J-H, Chiang B-H. Antioxidant activity of tartary (Fagopyrum tataricum (L.) gaertn.) and common (Fagopyrum esculentum moench) buckwheat sprouts. J Agric Food Chem. 2008;56(1):173–8. https://doi.org/10.1021/jf072347s.

    Article  CAS  PubMed  Google Scholar 

  122. Krkošková B, Mrázová Z. Prophylactic components of buckwheat. Food Res Int. 2005;38(5):561–8. https://doi.org/10.1016/j.foodres.2004.11.009.

    Article  Google Scholar 

  123. Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The chemical composition and nutritional value of chia seeds—current state of knowledge. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061242.

  124. Muñoz LA, Cobos A, Diaz O, Aguilera JM. Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev Int. 2013;29(4):394–408. https://doi.org/10.1080/87559129.2013.818014.

    Article  CAS  Google Scholar 

  125. Vázquez-Ovando JA, Rosado-Rubio JG, Chel-Guerrero LA, Betancur-Ancona DA. Dry processing of chía (Salvia hispanica L.) flour: chemical characterization of fiber and protein. CyTA - J Food. 2010;8(2):117–27. https://doi.org/10.1080/19476330903223580.

    Article  CAS  Google Scholar 

  126. Sandoval-Oliveros MR, Paredes-López O. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J Agric Food Chem. 2013;61(1):193–201. https://doi.org/10.1021/jf3034978.

    Article  CAS  PubMed  Google Scholar 

  127. Heck RT, Fagundes MB, Cichoski AJ, et al. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary. Meat Sci. 2019;148:164–70. https://doi.org/10.1016/j.meatsci.2018.10.017.

    Article  CAS  PubMed  Google Scholar 

  128. Shewry PR. Plant storage proteins. Biol Rev. 1995;70(3):375–426. https://doi.org/10.1111/j.1469-185X.1995.tb01195.x.

    Article  CAS  PubMed  Google Scholar 

  129. Shewry PR, Casey R. Seed proteins. Netherlands: Springer; 1999. p. 1–10. https://doi.org/10.1007/978-94-011-4431-5_1.

    Book  Google Scholar 

  130. Terras F, Schoofs H, Thevissen K, et al. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol. 1993;103(4):1311–9. https://doi.org/10.1104/pp.103.4.1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Genov N, Goshev I, Nikolova D, Nikolova Georgieva D, Filippi B, Svendsen I. A novel thermostable inhibitor of trypsin and subtilisin from the seeds of Brassica nigra: amino acid sequence, inhibitory and spectroscopic properties and thermostability. Biochim Biophys Acta. 1997;1341:157–64.

    Article  CAS  PubMed  Google Scholar 

  132. Svendsen IB, Nicolova D, Goshev I, Genov N. Isolation and characterization of a trypsin inhibitor from the seeds of kohlrabi (Brassica napus var, rapifera) belonging to the napin family of storage proteins. Carlsberg Res Commun. 1989;54:231–9.

    Article  CAS  PubMed  Google Scholar 

  133. Ayalew Y, Retta N, Desse G, Mohammed A, Mellesse A. Amino acid profile and protein quality in tuber and leaf of Coccnia abyssinica (Lam.) (Cogn.) accessions of Ethiopia. Food Sci Nutr. 2017;5(3):722–9. https://doi.org/10.1002/fsn3.452.

    Article  CAS  PubMed  Google Scholar 

  134. Seo S, Karboune S, Archelas A. Production and characterisation of potato patatin–galactose, galactooligosaccharides, and galactan conjugates of great potential as functional ingredients. Food Chem. 2014;158:480–9. https://doi.org/10.1016/j.foodchem.2014.02.141.

    Article  CAS  PubMed  Google Scholar 

  135. Liyanage R, Han KH, Watanabe S, et al. Potato and soy peptide diets modulate lipid metabolism in rats. Biosci Biotechnol Biochem. 2008;72(4):943–50. https://doi.org/10.1271/bbb.70593.

    Article  CAS  PubMed  Google Scholar 

  136. Komarnytsky S, Cook A, Raskin I. Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsin-dependent mechanism. Int J Obes. 2011;35(2):236–43. https://doi.org/10.1038/ijo.2010.192.

    Article  CAS  Google Scholar 

  137. Patel A, Devraja HC, Sharma P, Singh RRB. Food technology-II. 2019. https://agrimoon.com/food-technology-ii-pdf-book-freedownload/

  138. Shapiro M, Galperin V. Air classification of solid particles: a review. Chem Eng Process Process Intensif. 2005;44(2):279–85. https://doi.org/10.1016/j.cep.2004.02.022.

    Article  CAS  Google Scholar 

  139. Reichert RD. Air classification of peas (Pisum sativum) varying widely in protein content. J Food Sci. 1982;47(4):1263–7.

    Article  CAS  Google Scholar 

  140. Bose U, Broadbent JA, Byrne K, Hasan S, Howitt CA, Colgrave ML. Optimisation of protein extraction for in-depth profiling of the cereal grain proteome. J Proteome. 2019;197:23–33. https://doi.org/10.1016/j.jprot.2019.02.009.

    Article  CAS  Google Scholar 

  141. Zhang Y, Wang B, Zhang W, Xu W, Hu Z. Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction. J Cereal Sci. 2019;87:318–24. https://doi.org/10.1016/j.jcs.2019.04.018.

    Article  CAS  Google Scholar 

  142. Kumar M, Potkule J, Patil S, et al. Extraction of ultra-low gossypol protein from cottonseed: characterization based on antioxidant activity, structural morphology and functional group analysis. LWT. 2021;140:110692. https://doi.org/10.1016/j.lwt.2020.110692.

    Article  CAS  Google Scholar 

  143. Liu JJ, Gasmalla MAA, Li P, Yang R. Enzyme-assisted extraction processing from oilseeds: principle, processing and application. Innov Food Sci Emerg Technol. 2016;35:184–93. https://doi.org/10.1016/j.ifset.2016.05.002.

    Article  CAS  Google Scholar 

  144. Ochoa-Rivas A, Nava-Valdez Y, Serna-Saldívar SO, Chuck-Hernández C. Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: effects in yield and functional properties of protein isolates. Food Bioprocess Technol. 2017;10(3):543–55. https://doi.org/10.1007/s11947-016-1838-3.

    Article  CAS  Google Scholar 

  145. Rommi K, Hakala TK, Holopainen U, Nordlund E, Poutanen K, Lantto R. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes. J Agric Food Chem. 2014;62(32):7989–97. https://doi.org/10.1021/jf501802e.

    Article  CAS  PubMed  Google Scholar 

  146. Jung S, Lamsal BP, Stepien V, Johnson LA, Murphy PA. Functionality of soy protein produced by enzyme-assisted extraction. JAOCS, J Am Oil Chem Soc. 2006;83(1):71–8. https://doi.org/10.1007/s11746-006-1178-y.

    Article  CAS  Google Scholar 

  147. Houde M, Khodaei N, Benkerroum N, Karboune S. Barley protein concentrates: extraction, structural and functional properties. Food Chem. 2018;254:367–76. https://doi.org/10.1016/j.foodchem.2018.01.156.

    Article  CAS  PubMed  Google Scholar 

  148. Belwal T, Ezzat SM, Rastrelli L, et al. A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC - Trends Anal Chem. 2018;100:82–102. https://doi.org/10.1016/j.trac.2017.12.018.

    Article  CAS  Google Scholar 

  149. Lupatini AL, de Oliveira Bispo L, Colla LM, Costa JAV, Canan C, Colla E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res Int. 2017;99:1028–35. https://doi.org/10.1016/j.foodres.2016.11.036.

    Article  CAS  PubMed  Google Scholar 

  150. Wang F, Zhang Y, Xu L, Ma H. An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT. 2020;127:109348. https://doi.org/10.1016/j.lwt.2020.109348.

    Article  CAS  Google Scholar 

  151. Choi I, Cho SJ, Chun JK, Moon TW. Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J Food Process Preserv. 2006;30(4):407–19. https://doi.org/10.1111/j.1745-4549.2006.00075.x.

    Article  CAS  Google Scholar 

  152. Golberg A, Sack M, Teissie J, et al. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol Biofuels. 2016;9(1) https://doi.org/10.1186/s13068-016-0508-z.

  153. Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015;33(8):480–8. https://doi.org/10.1016/j.tibtech.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  154. Yu X, Bals O, Grimi N, Vorobiev E. A new way for the oil plant biomass valorization: polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Ind Crop Prod. 2015;74:309–18. https://doi.org/10.1016/j.indcrop.2015.03.045.

    Article  CAS  Google Scholar 

  155. Huang H-W, Hsu C-P, Yang BB, Wang C-Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Technol. 2013;33(1):54–62. https://doi.org/10.1016/j.tifs.2013.07.001.

    Article  CAS  Google Scholar 

  156. Mustafa A, Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta. 2011;703(1):8–18. https://doi.org/10.1016/j.aca.2011.07.018.

    Article  CAS  PubMed  Google Scholar 

  157. Chen R, Meng F, Zhang S, Liu Z. Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep Purif Technol. 2009;66(2):340–6. https://doi.org/10.1016/j.seppur.2008.12.026.

    Article  CAS  Google Scholar 

  158. Al-Ruwaih N, Ahmed J, Mulla MF, Arfat YA. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT. 2019;100:231–6. https://doi.org/10.1016/j.lwt.2018.10.074.

    Article  CAS  Google Scholar 

  159. Ruhräh J. The soy bean in infant feeding. In: Ruhrah J, editor. Preliminary report, vol. 26; 2009. p. 496–501.

    Google Scholar 

  160. Klish WJ, Baker SS, Cochran WJ, et al. Soy protein-based formulas: recommendations for use in infant feeding. Pediatrics. 1998;101(1):148–53. https://doi.org/10.1542/PEDS.101.1.148.

    Article  Google Scholar 

  161. Rossen LM, Simon AE, Herrick KA. Types of infant formulas consumed in the United States. Clin Pediatr (Phila). 2016;55(3):278–85. https://doi.org/10.1177/0009922815591881.

    Article  PubMed  Google Scholar 

  162. Gandhi AP. Review article: quality of soybean and its food products. Int Food Res J. 2009;16(1):11–9.

    CAS  Google Scholar 

  163. Hughes GJ, Ryan DJ, Mukherjea R, Schasteen CS. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. J Agric Food Chem. 2011;59(23):12707–12. https://doi.org/10.1021/jf203220v.

    Article  CAS  PubMed  Google Scholar 

  164. Gastañaduy A, Cordano A, Graham GG. Acceptability, tolerance, and nutritional value of a rice-based infant formula. J Pediatr Gastroenterol Nutr. 1990;11(2):240–6. https://doi.org/10.1097/00005176-199008000-00014.

    Article  PubMed  Google Scholar 

  165. Bocquet A, Dupont C, Chouraqui JP, et al. Efficacy and safety of hydrolyzed rice-protein formulas for the treatment of cow’s milk protein allergy. Arch Pediatr. 2019;26(4):238–46. https://doi.org/10.1016/j.arcped.2019.03.001.

    Article  CAS  PubMed  Google Scholar 

  166. Veereman-Wauters G, Staelens S, Van De Broek H, et al. Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J Pediatr Gastroenterol Nutr. 2011;52(6):763–71. https://doi.org/10.1097/MPG.0b013e3182139f39.

    Article  CAS  PubMed  Google Scholar 

  167. Fiocchi A, Travaini M, D’Auria E, Banderali G, Bernardo L, Riva E. Tolerance to a rice hydrolysate formula in children allergic to cow’s milk and soy. Clin Exp Allergy. 2003;33(11):1576–80. https://doi.org/10.1046/j.1365-2222.2003.01781.x.

    Article  CAS  PubMed  Google Scholar 

  168. Agostoni C, Fiocchi A, Riva E, et al. Growth of infants with IgE-mediated cow’s milk allergy fed different formulas in the complementary feeding period. Pediatr Allergy Immunol. 2007;18(7):599–606. https://doi.org/10.1111/j.1399-3038.2007.00566.x.

    Article  PubMed  Google Scholar 

  169. Lasekan JB, Koo WWK, Walters J, Neylan M, Luebbers S. Growth, tolerance and biochemical measures in healthy infants fed a partially hydrolyzed rice protein-based formula: a randomized, blinded, prospective trial. J Am Coll Nutr. 2006;25(1):12–9. https://doi.org/10.1080/07315724.2006.10719509.

    Article  CAS  PubMed  Google Scholar 

  170. Reche M, Pascual C, Fiandor A, et al. The effect of a partially hydrolysed formula based on rice protein in the treatment of infants with cow’s milk protein allergy. Pediatr Allergy Immunol. 2010;21(4 PART 1):577–85. https://doi.org/10.1111/j.1399-3038.2010.00991.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pouessel G, Jean-Bart C, Deschildre A, et al. Food-induced anaphylaxis in infancy compared to preschool age: a retrospective analysis. Clin Exp Allergy. 2020;50(1):74–81. https://doi.org/10.1111/cea.13519.

    Article  PubMed  Google Scholar 

  172. Gupta RS, Warren CM, Smith BM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6):1–12. http://publications.aap.org/pediatrics/article-pdf/142/6/e20181235/1075604/peds_20181235.pdf

    Article  Google Scholar 

  173. Salpietro CD, Gangemi S, Briuglia S, et al. The almond milk: a new approach to the management of cow-milk allergy/intolerance in infants. Minerva Pediatr. 2005;57(4):173–80.

    CAS  PubMed  Google Scholar 

  174. Popp J, Trendelenburg V, Niggemann B, et al. Pea (Pisum sativum) allergy in children: Pis s 1 is an immunodominant major pea allergen and presents IgE binding sites with potential diagnostic value. Clin Exp Allergy. 2020;50(5):625–35. https://doi.org/10.1111/cea.13590.

    Article  CAS  PubMed  Google Scholar 

  175. Cornet SHV, Snel SJE, Schreuders FKG, van der Sman RGM, Beyrer M, van der Goot AJ. Thermo-mechanical processing of plant proteins using shear cell and high-moisture extrusion cooking. Crit Rev Food Sci Nutr. 2021:1–18. https://doi.org/10.1080/10408398.2020.1864618.

  176. Pietsch VL, Bühler JM, Karbstein HP, Emin MA. High moisture extrusion of soy protein concentrate: influence of thermomechanical treatment on protein-protein interactions and rheological properties. J Food Eng. 2019;251:11–8. https://doi.org/10.1016/j.jfoodeng.2019.01.001.

    Article  CAS  Google Scholar 

  177. Chiang JH, Loveday SM, Hardacre AK, Parker ME. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Struct. 2019;19:100102. https://doi.org/10.1016/j.foostr.2018.11.002.

    Article  Google Scholar 

  178. Samard S, Gu BY, Ryu GH. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. J Sci Food Agric. 2019;99(11):4922–31. https://doi.org/10.1002/jsfa.9722.

    Article  CAS  PubMed  Google Scholar 

  179. Nanta P, Skolpap W, Kasemwong K. Influence of hydrocolloids on the rheological and textural attributes of a gluten-free meat analog based on soy protein isolate. J Food Process Preserv. 2021;45(3) https://doi.org/10.1111/jfpp.15244.

  180. Dekkers BL, Boom RM, van der Goot AJ. Structuring processes for meat analogues. Trends Food Sci Technol. 2018;81:25–36. https://doi.org/10.1016/j.tifs.2018.08.011.

    Article  CAS  Google Scholar 

  181. Rios-Mera JD, Saldaña E, Cruzado-Bravo MLM, et al. Impact of the content and size of NaCl on dynamic sensory profile and instrumental texture of beef burgers. Meat Sci. 2020;161:107992. https://doi.org/10.1016/j.meatsci.2019.107992.

    Article  CAS  PubMed  Google Scholar 

  182. Pietrasik Z, Sigvaldson M, Soladoye OP, Gaudette NJ. Utilization of pea starch and fibre fractions for replacement of wheat crumb in beef burgers. Meat Sci. 2020:161. https://doi.org/10.1016/j.meatsci.2019.107974.

  183. Aydar EF, Tutuncu S, Ozcelik B. Plant-based milk substitutes: bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J Funct Foods. 2020;70:103975. https://doi.org/10.1016/j.jff.2020.103975.

    Article  CAS  Google Scholar 

  184. Mäkinen OE, Wanhalinna V, Zannini E, Arendt EK. Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Crit Rev Food Sci Nutr. 2016;56(3):339–49. https://doi.org/10.1080/10408398.2012.761950.

    Article  CAS  PubMed  Google Scholar 

  185. Arrutia F, Binner E, Williams P, Waldron KW. Oilseeds beyond oil: press cakes and meals supplying global protein requirements. Trends Food Sci Technol. 2020;100:88–102. https://doi.org/10.1016/j.tifs.2020.03.044.

    Article  CAS  Google Scholar 

  186. Sethi S, Tyagi SK, Anurag RK. Plant-based milk alternatives an emerging segment of functional beverages: a review. J Food Sci Technol. 2016;53(9):3408–23. https://doi.org/10.1007/s13197-016-2328-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jeske S, Zannini E, Arendt EK. Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res Int. 2018;110:42–51. https://doi.org/10.1016/j.foodres.2017.03.045.

    Article  CAS  PubMed  Google Scholar 

  188. Xie M, An F, Yue X, et al. Characterization and comparison of metaproteomes in traditional and commercial dajiang, a fermented soybean paste in northeast China. Food Chem. 2019;301:125270. https://doi.org/10.1016/j.foodchem.2019.125270.

    Article  CAS  PubMed  Google Scholar 

  189. Pal M, Devrani M, Ayele Y. Tofu: a popular food with high nutritional and health benefits. Ingredients & Additives, Food & Beverages Processing. Published 2019. https://www.researchgate.net/publication/332343856.

  190. Ito M. The production of mouse model of slowly progressive diabetes mellitus and the preventive effect of low molecular weight chitosan on the progression of the diabetes mellitus. J Pharm Soc Japan. 2013;133(7):773–82. https://doi.org/10.1248/yakushi.13-00140.

    Article  CAS  Google Scholar 

  191. Riaz MN. Healthy baking with soy ingredients. Cereal Foods World. 1999;44(3):136–9.

    Google Scholar 

  192. Fukushima D. Soy proteins. In: Handbook of food proteins. Elsevier; 2011. p. 210–32. https://doi.org/10.1533/9780857093639.210.

    Chapter  Google Scholar 

  193. Ge J, Sun CX, Corke H, Gul K, Gan RY, Fang Y. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: current status, challenges, and perspectives. Compr Rev Food Sci Food Saf. 2020;19(4):1835–76. https://doi.org/10.1111/1541-4337.12573.

    Article  CAS  PubMed  Google Scholar 

  194. Kolpakova VV, Lukin ND. Gaivoronskaya IS. Interrelation of functional properties of protein products from wheat with the composition and physicochemical characteristics of their proteins. In: Global wheat production. INTECH; 2018. p. 205. https://doi.org/10.5772/intechopen.75803.

    Chapter  Google Scholar 

  195. Lin M, Tay SH, Yang H, Yang B, Li H. Development of eggless cakes suitable for lacto-vegetarians using isolated pea proteins. Food Hydrocoll. 2017;69:440–9. https://doi.org/10.1016/j.foodhyd.2017.03.014.

    Article  CAS  Google Scholar 

  196. Avilés-Gaxiola S, Chuck-Hernández C, del Refugio Rocha-Pizaña M, García-Lara S, López-Castillo LM, Serna-Saldívar SO. Effect of thermal processing and reducing agents on trypsin inhibitor activity and functional properties of soybean and chickpea protein concentrates. LWT. 2018;98:629–34. https://doi.org/10.1016/j.lwt.2018.09.023.

    Article  CAS  Google Scholar 

  197. Pam Ismail B, Senaratne-Lenagala L, Stube A, Brackenridge A. Protein demand: review of plant and animal proteins used in alternative protein product development and production. Anim Front. 2020;10(4):53–63. https://doi.org/10.1093/af/vfaa040.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zeeb B, Yavuz-Düzgun M, Dreher J, et al. Modulation of the bitterness of pea and potato proteins by a complex coacervation method. Food Funct. 2018;9(4):2261–9. https://doi.org/10.1039/C7FO01849E.

    Article  CAS  PubMed  Google Scholar 

  199. Bessada SMF, Barreira JCM, Oliveira MBPP. Pulses and food security: dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol. 2019;93:53–68. https://doi.org/10.1016/j.tifs.2019.08.022.

    Article  CAS  Google Scholar 

  200. Boukid F, Zannini E, Carini E, Vittadini E. Pulses for bread fortification: a necessity or a choice? Trends Food Sci Technol. 2019;88:416–28. https://doi.org/10.1016/j.tifs.2019.04.007.

    Article  CAS  Google Scholar 

  201. Kamalasundari S, Babu R, Umamaheswari T. Effect of domestic processing methods on anti-nutritional factors and its impact on the bio- availability proteins and starch in commonly consumed whole legumes. Asian J Dairy Food Res. 2019; https://doi.org/10.18805/ajdfr.DR-1410.

  202. Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr. 2020;2(1) https://doi.org/10.1186/s43014-020-0020-5.

  203. Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 2015;52(2):676–84. https://doi.org/10.1007/s13197-013-0978-y.

    Article  CAS  PubMed  Google Scholar 

  204. Rachwa-Rosiak D, Nebesny E, Budryn G. Chickpeas—composition, nutritional value, health benefits, application to bread and snacks: a review. Crit Rev Food Sci Nutr. 2015;55(8):1137–45. https://doi.org/10.1080/10408398.2012.687418.

    Article  CAS  PubMed  Google Scholar 

  205. Foegeding EA. Food protein functionality-a new model. J Food Sci. 2015;80(12):C2670–7. https://doi.org/10.1111/1750-3841.13116.

    Article  CAS  PubMed  Google Scholar 

  206. Day L. Proteins from land plants - potential resources for human nutrition and food security. Trends Food Sci Technol. 2013;32(1):25–42. https://doi.org/10.1016/j.tifs.2013.05.005.

    Article  CAS  Google Scholar 

  207. Kutzli I, Weiss J, Gibis M. Glycation of plant proteins via maillard reaction: reaction chemistry, technofunctional properties, and potential food application. Foods. 2021;10(2) https://doi.org/10.3390/foods10020376.

  208. Ma KK, Greis M, Lu J, Nolden AA, McClements DJ, Kinchla AJ. Functional performance of plant proteins. Foods. 2022;11(4):594. https://doi.org/10.3390/foods11040594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Aydemir LY, Yemenicioĝlu A. Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT-Food Sci Technol. 2013;50(2):686–94. https://doi.org/10.1016/j.lwt.2012.07.023.

    Article  CAS  Google Scholar 

  210. Tang C-H, Wang X-Y, Yang X-Q, Li L. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. J Food Eng. 2009;92(4):432–7. https://doi.org/10.1016/j.jfoodeng.2008.12.017.

    Article  CAS  Google Scholar 

  211. Bolontrade AJ, Scilingo AA, Añón MC. Amaranth proteins foaming properties: adsorption kinetics and foam formation-Part 1. Coll Surf B Biointerfaces. 2013;105:319–27. https://doi.org/10.1016/j.colsurfb.2012.12.039.

    Article  CAS  Google Scholar 

  212. Nikbakht Nasrabadi M, Sedaghat Doost A, Mezzenga R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021;118 https://doi.org/10.1016/j.foodhyd.2021.106789.

  213. Yousefi N, Abbasi S. Food proteins: solubility & thermal stability improvement techniques. Food Chem Adv. 2022;1(April):100090. https://doi.org/10.1016/j.focha.2022.100090.

    Article  Google Scholar 

  214. Gharibzahedi SMT, Smith B. The functional modification of legume proteins by ultrasonication: a review. Trends Food Sci Technol. 2020;98:107–16. https://doi.org/10.1016/j.tifs.2020.02.002.

    Article  CAS  Google Scholar 

  215. Usman M, Zhang C, Patil PJ, et al. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - a review. Carbohydr Polym. 2021;252:117176. https://doi.org/10.1016/j.carbpol.2020.117176.

    Article  CAS  PubMed  Google Scholar 

  216. Clark AJ, Soni BK, Sharkey B, et al. Shiitake mycelium fermentation improves digestibility, nutritional value, flavor and functionality of plant proteins. LWT-Food Sci Technol. 2022;156:113065. https://doi.org/10.1016/j.lwt.2021.113065.

    Article  CAS  Google Scholar 

  217. Can Karaca A, Low NH, Nickerson MT. Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends Food Sci Technol. 2015;42(1):5–12. https://doi.org/10.1016/j.tifs.2014.11.002.

    Article  CAS  Google Scholar 

  218. Patil PJ, Usman M, Zhang C, et al. An updated review on food-derived bioactive peptides: focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf. 2022;21(2):1732–76. https://doi.org/10.1111/1541-4337.12911.

    Article  PubMed  Google Scholar 

  219. Yang J, Kornet R, Diedericks CF, et al. Rethinking plant protein extraction: Albumin—From side stream to an excellent foaming ingredient. Food Struct. 2022:31. https://doi.org/10.1016/j.foostr.2022.100254.

  220. Brückner-Gühmann M, Heiden-Hecht T, Sözer N, Drusch S. Foaming characteristics of oat protein and modification by partial hydrolysis. Eur Food Res Technol. 2018;244(12):2095–106. https://doi.org/10.1007/s00217-018-3118-0.

    Article  CAS  Google Scholar 

  221. Wen C, Zhang J, Qin W, et al. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in Maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chem. 2020:331. https://doi.org/10.1016/j.foodchem.2020.127374.

  222. Cheng YH, Tang WJ, Xu Z, Wen L, Chen ML. Structure and functional properties of rice protein–dextran conjugates prepared by the Maillard reaction. Int J Food Sci Technol. 2018;53(2):372–80. https://doi.org/10.1111/ijfs.13594.

    Article  CAS  Google Scholar 

  223. Blikra MJ, Henjum S, Aakre I. Iodine from brown algae in human nutrition, with an emphasis on bioaccessibility, bioavailability, chemistry, and effects of processing: a systematic review. Compr Rev Food Sci Food Saf. 2022;21(2):1517–36. https://doi.org/10.1111/1541-4337.12918.

    Article  CAS  PubMed  Google Scholar 

  224. O’Sullivan J, Murray B, Flynn C, Norton I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll. 2016;53:141–54. https://doi.org/10.1016/j.foodhyd.2015.02.009.

    Article  CAS  Google Scholar 

  225. Konak ÜI, Ercili-Cura D, Sibakov J, Sontag-Strohm T, Certel M, Loponen J. CO2-defatted oats: solubility, emulsification and foaming properties. J Cereal Sci. 2014;60(1):37–41. https://doi.org/10.1016/j.jcs.2014.01.013.

    Article  CAS  Google Scholar 

  226. Yung MC. Preparation, composition and functional properties of oat protein isolates. Can Inst Food Sci Technol J. 1983;16(3):201–5. https://doi.org/10.1016/S0315-5463(83)72208-X.

    Article  Google Scholar 

  227. O’Mahony JA, Drapala KP, Mulcahy EM, Mulvihill DM. Whey protein−carbohydrate conjugates. In: Whey proteins. Elsevier; 2019. p. 249–80. https://doi.org/10.1016/B978-0-12-812124-5.00008-4.

    Chapter  Google Scholar 

  228. Spaen J, Silva JVC. Oat proteins: review of extraction methods and techno-functionality for liquid and semi-solid applications. LWT. 2021;147:111478. https://doi.org/10.1016/j.lwt.2021.111478.

    Article  CAS  Google Scholar 

  229. Peterson DM. Storage proteins. In: Oats. 2nd ed. American Associate of Cereal Chemists International; 2011. p. 123–42. https://doi.org/10.1016/B978-1-891127-64-9.50013-0.

    Chapter  Google Scholar 

  230. Nieto-Nieto TV, Wang YX, Ozimek L, Chen L. Inulin at low concentrations significantly improves the gelling properties of oat protein – a molecular mechanism study. Food Hydrocoll. 2015;50:116–27. https://doi.org/10.1016/j.foodhyd.2015.03.031.

    Article  CAS  Google Scholar 

  231. Renkema JMS, Knabben JHM, van Vliet T. Gel formation by β-conglycinin and glycinin and their mixtures. Food Hydrocoll. 2001;15(4–6):407–14. https://doi.org/10.1016/S0268-005X(01)00051-0.

    Article  CAS  Google Scholar 

  232. Bernd L. Receptors and transduction in taste. Nature. 2001;413:219–25. https://www.nature.com

    Article  Google Scholar 

  233. Rackis JJ, Sessa DJ, Honig DH. Flavor problems of vegetable food proteins. J Am Oil Chem Soc. 1979;56:248–71.

    Article  Google Scholar 

  234. MacLeod G, Ames J, Betz NL. Soy flavor and its improvement. Crit Rev Food Sci Nutr. 1988;27(4):219–400. https://doi.org/10.1080/10408398809527487.

    Article  CAS  PubMed  Google Scholar 

  235. Azarnia S, Boye JI, Warkentin T, Malcolmson L. Changes in volatile flavour compounds in field pea cultivars as affected by storage conditions. Int J Food Sci Technol. 2011;46(11):2408–19. https://doi.org/10.1111/j.1365-2621.2011.02764.x.

    Article  CAS  Google Scholar 

  236. Azarnia S, Boye JI, Warkentin T, Malcolmson L, Sabik H, Bellido AS. Volatile flavour profile changes in selected field pea cultivars as affected by crop year and processing. Food Chem. 2011;124(1):326–35. https://doi.org/10.1016/j.foodchem.2010.06.041.

    Article  CAS  Google Scholar 

  237. Reineccius G. Flavor chemistry and technology. 2nd ed. CRC Press; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minwei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Usman, M., Xu, M. (2024). Plant-Based Proteins: Plant Source, Extraction, Food Applications, and Challenges. In: Du, X., Yang, J. (eds) Flavor-Associated Applications in Health and Wellness Food Products . Springer, Cham. https://doi.org/10.1007/978-3-031-51808-9_11

Download citation

Publish with us

Policies and ethics