Skip to main content

Alcohol Reduction: Product Challenges, Approaches, and Application of Flavors

  • Chapter
  • First Online:
Flavor-Associated Applications in Health and Wellness Food Products
  • 140 Accesses

Abstract

Alcohol-free beer and wine are attractive products for the brewing industry and consumers alike. It is a fast-growing segment of the beverage market worldwide nowadays. Innovative biological and physical methods have been developed to produce these reduced alcohol products. However, their aroma and taste are usually negatively different from their full-alcohol counterparts, including various flavor imperfections and sometimes off-flavors. One improvement approach is to add natural aroma-active compounds, while another is aroma recovery and reintroduction. This chapter will provide an overview of this subject in the following order: (1) the history of alcoholic beverages and their classification, (2) health concerns of alcohol overconsumption, (3) ethanol’s physical properties, (4) the ethanol removal process, (5) the impact of ethanol removal on sensory properties, (6) procedures for replacing sensory properties lost during ethanol removal, and (7) major challenges and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lafontaine S, Senn K, Dennenlöhr J, et al. Characterizing volatile and nonvolatile factors influencing flavor and American consumer preference toward nonalcoholic beer. ACS omega. 2020;5(36):23308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yadav AK, Velaga NR. Laboratory analysis of driving behavior and self-perceived physiological impairment at 0.03%, 0.05% and 0.08% blood alcohol concentrations. Drug Alcohol Depend. 2019;205:107630. https://www.sciencedirect.com/science/article/pii/S0376871619304077. https://doi.org/10.1016/j.drugalcdep.2019.107630.

    Article  CAS  PubMed  Google Scholar 

  3. Angus C, Holmes J, Meier PS. Comparing alcohol taxation throughout the European Union. Addiction. 2019;114(8):1489–94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bucher T, Deroover K, Stockley C. Low-alcohol wine: a narrative review on consumer perception and behaviour. Beverages. 2018;4(4):82.

    Article  Google Scholar 

  5. Chrysochou P. Drink to get drunk or stay healthy? Exploring consumers’ perceptions, motives and preferences for light beer. Food Qual Prefer. 2014;31:156–63. https://www.sciencedirect.com/science/article/pii/S0950329313001389. https://doi.org/10.1016/j.foodqual.2013.08.006.

    Article  Google Scholar 

  6. Nutt DJ. Alcohol alternatives–a goal for psychopharmacology? J Psychopharmacol. 2006;20(3):318–20.

    Article  PubMed  Google Scholar 

  7. Segal DS, Stockwell T. Low alcohol alternatives: a promising strategy for reducing alcohol related harm. Int J Drug Policy. 2009;20(2):183–7. https://www.sciencedirect.com/science/article/pii/S0955395908001357. https://doi.org/10.1016/j.drugpo.2008.06.001.

    Article  PubMed  Google Scholar 

  8. National Institute on Alcohol Abuse and Alcoholism. Alcohol’s effects on the body. https://www.niaaa.nih.gov/alcohols-effects-health/alcohols-effects-body. Accessed 6 Jul 2023.

  9. Ohtsubo SY, Ohno Y, Tsumura M, et al. Supporting stem cells. PNAS. 2008;105(30):10271–2.

    Google Scholar 

  10. Gately I. Drink: a cultural history of alcohol. New York: Penguin; 2008.

    Google Scholar 

  11. Wolf A, Bray GA, Popkin BM. A short history of beverages and how our body treats them. Obes Rev. 2008;9(2):151–64.

    Article  CAS  PubMed  Google Scholar 

  12. Meussdoerffer FG. A comprehensive history of beer brewing. In: Handbook of brewing: processes, technology, markets. Hoboken: Wiley; 2009. p. 1–42.

    Google Scholar 

  13. Hornsey IS. A history of beer and brewing, vol. 34. Royal Society of Chemistry; 2003.

    Google Scholar 

  14. McGovern PE, Zhang J, Tang J, et al. Fermented beverages of pre-and proto-historic china. Proc Natl Acad Sci. 2004;101(51):17593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joseph S, Hemalatha K. Alcohol and alcoholism in India; a historical. Int J Sci Healthc Res 2020;5(4):343–354.

    Google Scholar 

  16. Kang Q, Sun J, Wang B, Sun B. Wine, beer and chinese baijiu in relation to cardiovascular health: the impact of moderate drinking. Food Sci Human Wellness. 2023;12(1):1–13. https://www.sciencedirect.com/science/article/pii/S2213453022001203. https://doi.org/10.1016/j.fshw.2022.07.013.

    Article  CAS  Google Scholar 

  17. Vallee BL. Alcohol in the western world. Sci Am. 1998;278(6):80–5.

    Article  CAS  PubMed  Google Scholar 

  18. Chrzan J. Alcohol: social drinking in cultural context. Routledge; 2013.

    Book  Google Scholar 

  19. Steptoe A, Wardle J. Mood and drinking: a naturalistic diary study of alcohol, coffee and tea. Psychopharmacology. 1999;141:315–21.

    Article  CAS  PubMed  Google Scholar 

  20. Rumgay H, Murphy N, Ferrari P, Soerjomataram I. Alcohol and cancer: epidemiology and biological mechanisms. Nutrients. 2021;13(9):3173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nutt D, Hayes A, Fonville L, et al. Alcohol and the brain. Nutrients. 2021;13(11):3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pelucchi C, Tramacere I, Boffetta P, Negri E, Vecchia CL. Alcohol consumption and cancer risk. Nutr Cancer. 2011;63(7):983–90.

    Article  CAS  PubMed  Google Scholar 

  23. Singh A, Singh A. A comparative overview of bioethanol production from organic residues of agro waste materials. Eur J Biotechnol Biosci. 2015;3(3):11–4.

    Google Scholar 

  24. Ickes CM, Cadwallader KR. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens Percept. 2017;10:119–34.

    Article  CAS  Google Scholar 

  25. Liguori L, De Francesco G, Russo P, Perretti G, Albanese D, Di Matteo M. Quality attributes of low-alcohol top-fermented beers produced by membrane contactor. Food Bioprocess Technol. 2016;9:191–200.

    Article  CAS  Google Scholar 

  26. Piggott J. Alcoholic beverages: sensory evaluation and consumer research. Elsevier; 2011.

    Google Scholar 

  27. Kokkinidou S, Peterson DG. Identification of compounds that contribute to trigeminal burn in aqueous ethanol solutions. Food Chem. 2016;211:757–62.

    Article  CAS  PubMed  Google Scholar 

  28. Mangindaan D, Khoiruddin K, Wenten IG. Beverage dealcoholization processes: past, present, and future. Trends Food Sci Technol. 2018;71:36–45. https://www.sciencedirect.com/science/article/pii/S0924224417303813. https://doi.org/10.1016/j.tifs.2017.10.018.

    Article  CAS  Google Scholar 

  29. De Francesco G, Turchetti B, Sileoni V, Marconi O, Perretti G. Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J Inst Brew. 2015;121(1):113–21.

    Article  Google Scholar 

  30. Liguori L, De Francesco G, Russo P, Perretti G, Albanese D, Di Matteo M. Production and characterization of alcohol-free beer by membrane process. Food Bioprod Process. 2015;94:158–68. https://www.sciencedirect.com/science/article/pii/S0960308515000310. https://doi.org/10.1016/j.fbp.2015.03.003.

    Article  CAS  Google Scholar 

  31. Pilarski DW, Gerogiorgis DI. Progress and modelling of cold contact fermentation for alcohol-free beer production: a review. J Food Eng. 2020;273:109804. https://www.sciencedirect.com/science/article/pii/S0260877419304480. https://doi.org/10.1016/j.jfoodeng.2019.109804.

    Article  CAS  Google Scholar 

  32. Andrés-Iglesias C, Blanco CA, García-Serna J, Pando V, Montero O. Volatile compound profiling in commercial lager regular beers and derived alcohol-free beers after dealcoholization by vacuum distillation. Food Anal Methods. 2016;9:3230–41.

    Article  Google Scholar 

  33. Montanari L, Floridi S, Marconi O, Tironzelli M, Fantozzi P. Effect of mashing procedures on brewing. Eur Food Res Technol. 2005;221:175–9.

    Article  CAS  Google Scholar 

  34. Bamforth CW. Wort composition and beer quality. Brewing yeast fermentation performance. New York: Wiley; 2003. p. 75–85.

    Book  Google Scholar 

  35. Goode DL, Halbert C, Arendt EK. Optimization of mashing conditions when mashing with unmalted sorghum and commercial enzymes. J Am Soc Brew Chem. 2003;61(2):69–78.

    CAS  Google Scholar 

  36. Brányik T, Silva DP, Baszczyňski M, Lehnert R, e Silva JBA. A review of methods of low alcohol and alcohol-free beer production. J Food Eng. 2012;108(4):493–506.

    Article  Google Scholar 

  37. Ivanov K, Petelkov I, Shopska V, Denkova R, Gochev V, Kostov G. Investigation of mashing regimes for low-alcohol beer production. J Inst Brew. 2016;122(3):508–16.

    Article  CAS  Google Scholar 

  38. Botezatu A, Elizondo C, Bajec M, Miller R. Enzymatic management of pH in white wines. Molecules. 2021;26(9):2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidtke LM, Blackman JW, Agboola SO. Production technologies for reduced alcoholic wines. J Food Sci. 2012;77(1):R25–41.

    Article  CAS  PubMed  Google Scholar 

  40. Pickering GJ. Low-and reduced-alcohol wine: a review. J Wine Res. 2000;11(2):129–44.

    Article  Google Scholar 

  41. Varela C, Dry PR, Kutyna DR, et al. Strategies for reducing alcohol concentration in wine. Aust J Grape Wine Res. 2015;21:670–9.

    Article  Google Scholar 

  42. Biyela B, Du Toit WJ, Divol B, Malherbe DF, Van Rensburg P. The production of reduced-alcohol wines using gluzyme mono® 10.000 BG-treated grape juice. South Afr J Enol Vitic. 2009;30(2):124–32.

    CAS  Google Scholar 

  43. Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS. Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol. 2017;10(2):264–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pilarski DW, Gerogiorgis DI. Systematic parameter estimation and dynamic simulation of cold contact fermentation for alcohol-free beer production. PRO. 2022;10(11):2400.

    CAS  Google Scholar 

  45. Piornos JA, Koussissi E, Balagiannis DP, Brouwer E, Parker JK. Alcohol-free and low-alcohol beers: aroma chemistry and sensory characteristics. Compr Rev Food Sci Food Saf. 2023;22(1):233–59.

    Article  CAS  PubMed  Google Scholar 

  46. Nikulin J, Aisala H, Gibson B. Production of non-alcoholic beer via cold contact fermentation with Torulaspora delbrueckii. J Inst Brew. 2022;128(1):28–35.

    Article  CAS  Google Scholar 

  47. Okaru AO, Lachenmeier DW. Defining no and low (NoLo) alcohol products. Nutrients. 2022;14(18):3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C. Evaluation of non-saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol. 2014;80(5):1670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv. 2008;26(1):89–105. https://www.sciencedirect.com/science/article/pii/S0734975007001000. https://doi.org/10.1016/j.biotechadv.2007.09.002.

    Article  CAS  PubMed  Google Scholar 

  50. Bellut K, Michel M, Zarnkow M, et al. Application of non-saccharomyces yeasts isolated from kombucha in the production of alcohol-free beer. Fermentation. 2018;4(3):66.

    Article  Google Scholar 

  51. Sohrabvandi S, Razavi SH, Mousavi SM, Mortazavian A, Rezaei K. Application of saccharomyces rouxii for the production of non-alcoholic beer. Food Sci Biotechnol. 2009;18(5):1132–7.

    CAS  Google Scholar 

  52. Salanță LC, Coldea TE, Ignat MV, et al. Non-alcoholic and craft beer production and challenges. PRO. 2020;8(11):1382.

    Google Scholar 

  53. Muller C, Neves LE, Gomes L, Guimarães M, Ghesti G. Processes for alcohol-free beer production: a review. Food Sci Technol. 2019;40:273–81.

    Article  Google Scholar 

  54. van Iersel MFM, Brouwer–Post E, Rombouts FM, Abee T. Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzym Microb Technol. 2000;26(8):602–7. https://www.sciencedirect.com/science/article/pii/S014102290000140X. https://doi.org/10.1016/S0141-0229(00)00140-X.

    Article  Google Scholar 

  55. Sam FE, Ma T, Salifu R, et al. Techniques for dealcoholization of wines: their impact on wine phenolic composition, volatile composition, and sensory characteristics. Foods. 2021;10(10):2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heux S, Cachon R, Dequin S. Cofactor engineering in saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab Eng. 2006;8(4):303–14.

    Article  CAS  PubMed  Google Scholar 

  57. Selecký R, Šmogrovičová D, Sulo P. Beer with reduced ethanol content produced using saccharomyces cerevisiae yeasts deficient in various tricarboxylic acid cycle enzymes. J Inst Brew. 2008;114(2):97–101.

    Article  Google Scholar 

  58. Andrés-Iglesias C, García-Serna J, Montero O, Blanco CA. Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation. Food Res Int. 2015;76:751–60.

    Article  PubMed  Google Scholar 

  59. Horácio PS, Veiga BA, Luz LF Jr, Levek CA, de Souza AR, Scheer AP. Simulation of vacuum distillation to produce alcohol-free beer. J Inst Brew. 2020;126(1):77–82.

    Article  Google Scholar 

  60. Belisario-Sánchez YY, Taboada-Rodríguez A, Marín-Iniesta F, Iguaz-Gainza A, López-Gómez A. Aroma recovery in wine dealcoholization by SCC distillation. Food Bioprocess Technol. 2012;5:2529–39.

    Article  Google Scholar 

  61. Catarino M, Mendes A. Non-alcoholic beer—a new industrial process. Sep Purif Technol. 2011;79(3):342–51. https://www.sciencedirect.com/science/article/pii/S1383586611001705. https://doi.org/10.1016/j.seppur.2011.03.020.

    Article  CAS  Google Scholar 

  62. Saghatoleslami N, Amiri M, Golkhatmi JR. Prediction of flooding and pressure drop in a spinning cone column using neural networks. Int J Ind Chem. 2012;3:1–6.

    Article  Google Scholar 

  63. Pham D, Stockdale VJ, Wollan D, Jeffery DW, Wilkinson KL. Compositional consequences of partial dealcoholization of red wine by reverse osmosis-evaporative perstraction. Molecules. 2019;24(7):1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Diban N, Arruti A, Barceló A, Puxeu M, Urtiaga A, Ortiz I. Membrane dealcoholization of different wine varieties reducing aroma losses. modeling and experimental validation. Innovative Food Sci Emerg Technol. 2013;20:259–68. https://www.sciencedirect.com/science/article/pii/S1466856413000908. https://doi.org/10.1016/j.ifset.2013.05.011.

    Article  CAS  Google Scholar 

  65. Ambrosi A, Cardozo NSM, Tessaro IC. Membrane separation processes for the beer industry: a review and state of the art. Food Bioprocess Technol. 2014;7:921–36.

    Article  Google Scholar 

  66. López M, Alvarez S, Riera FA, Alvarez R. Production of low alcohol content apple cider by reverse osmosis. Ind Eng Chem Res. 2002;41(25):6600–6.

    Article  Google Scholar 

  67. Montanari L, Marconi O, Mayer H, Fantozzi P. Production of alcohol-free beer. In: Beer in health and disease prevention. Elsevier; 2009. p. 61–75.

    Chapter  Google Scholar 

  68. Prestes Alves KM, da Silva BJG, de Paula Scheer A. Beer aroma recovery and dealcoholisation by a two-step pervaporation process. J Inst Brew. 2020;126(1):67–76.

    Article  CAS  Google Scholar 

  69. Ruiz-Rodriguez A, Fornari T, Hernández EJ, Señorans FJ, Reglero G. Thermodynamic modeling of dealcoholization of beverages using supercritical CO2: application to wine samples. J Supercrit Fluids. 2010;52(2):183–8. https://www.sciencedirect.com/science/article/pii/S0896844610000069. https://doi.org/10.1016/j.supflu.2009.12.011.

    Article  CAS  Google Scholar 

  70. Mićić V, Novaković D, Lepojević Ž, et al. Supercritical fluid extraction with carbon dioxide at different pressures. ContempMater. 2011;1:85–7.

    Google Scholar 

  71. Ruiz-Rodríguez A, Fornari T, Jaime L, et al. Supercritical CO2 extraction applied toward the production of a functional beverage from wine. J Supercrit Fluids. 2012;61:92–100. https://www.sciencedirect.com/science/article/pii/S0896844611003767. https://doi.org/10.1016/j.supflu.2011.09.002.

    Article  CAS  Google Scholar 

  72. Sohrabvandi S, Mousavi SM, Razavi SH, Mortazavian AM, Rezaei K. Alcohol-free beer: methods of production, sensorial defects, and healthful effects. Food Rev Int. 2010;26(4):335–52.

    Article  Google Scholar 

  73. Jiang Z, Yang B, Liu X, et al. A novel approach for the production of a non-alcohol beer (≤ 0.5% abv) by a combination of limited fermentation and vacuum distillation. J Inst Brew. 2017;123(4):533–6.

    Article  CAS  Google Scholar 

  74. Sileoni V, Maranghi S, De Francesco G. et al. Flavour stability of a cold-stored unpasteurized low-alcohol beer produced by Saccharomycodes ludwigii. Food Bioprocess Technol 2023;16:2471–2482. https://doi.org/10.1007/s11947-023-03061-w

  75. Scinska A, Koros E, Habrat B, Kukwa A, Kostowski W, Bienkowski P. Bitter and sweet components of ethanol taste in humans. Drug Alcohol Depend. 2000;60(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  76. Hoopman T, Birch G, Serghat S, Portmann M, Mathlouthi M. Solute-solvent interactions and the sweet taste of small carbohydrates. part II: sweetness intensity and persistence in ethanol-water mixtures. Food Chem. 1993;46(2):147–53.

    Article  CAS  Google Scholar 

  77. Martin S, Pangborn RM. Taste interaction of ethyl alcohol with sweet, salty, sour and bitter compounds. J Sci Food Agric. 1970;21(12):653–5.

    Article  CAS  PubMed  Google Scholar 

  78. Lemon CH, Brasser SM, Smith DV. Alcohol activates a sucrose-responsive gustatory neural pathway. J Neurophysiol. 2004;92(1):536–44.

    Article  CAS  PubMed  Google Scholar 

  79. The Good Scents Company (tgsc). Ethanol, 64-17-5. TGSC information system website. http://www.thegoodscentscompany.com/data/rw1000511.html. Accessed 20 Jul 2023.

  80. Mattes RD, DiMeglio D. Ethanol perception and ingestion. Physiol Behav. 2001;72(1–2):217–29.

    Article  CAS  PubMed  Google Scholar 

  81. Cretin BN, Dubourdieu D, Marchal A. Influence of ethanol content on sweetness and bitterness perception in dry wines. LWT. 2018;87:61–6.

    Article  CAS  Google Scholar 

  82. Clark R, Linforth R, Bealin-Kelly F, Hort J. Effects of ethanol, carbonation and hop acids on volatile delivery in a model beer system. J Inst Brew. 2011;117(1):74–81.

    Article  CAS  Google Scholar 

  83. Aprea E, Biasioli F, Märk TD, Gasperi F. PTR-MS study of esters in water and water/ethanol solutions: fragmentation patterns and partition coefficients. Int J Mass Spectrom. 2007;262(1–2):114–21.

    Article  CAS  Google Scholar 

  84. Lentz M. The impact of simple phenolic compounds on beer aroma and flavor. Fermentation. 2018;4(1):20.

    Article  Google Scholar 

  85. Bartolomé B, Pena-Neira A, Gómez-Cordovés C. Phenolics and related substances in alcohol-free beers. Eur Food Res Technol. 2000;210:419–23.

    Article  Google Scholar 

  86. Blanco CA, Andrés-Iglesias C, Montero O. Low-alcohol beers: flavor compounds, defects, and improvement strategies. Crit Rev Food Sci Nutr. 2016;56(8):1379–88.

    Article  CAS  PubMed  Google Scholar 

  87. Escudero A, Campo E, Fariña L, Cacho J, Ferreira V. Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J Agric Food Chem. 2007;55(11):4501–10.

    Article  CAS  PubMed  Google Scholar 

  88. Roberts D, Plotto A. A unique mentha aquatica mint for flavor. Perfum Flavor. 2002;27(6):24–9.

    CAS  Google Scholar 

  89. Szallasi A, Blumberg PM. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51(2):159–212.

    CAS  PubMed  Google Scholar 

  90. Yang X, Eilerman RG. Pungent principal of Alpinia galangal (L.) swartz and its applications. J Agric Food Chem. 1999;47(4):1657–62.

    Article  CAS  PubMed  Google Scholar 

  91. Langstaff SA, Lewis MJ. The mouthfeel of beer—a review. J Inst Brew. 1993;99(1):31–7.

    Article  CAS  Google Scholar 

  92. Zhao X, Procopio S, Becker T. Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. J Food Sci Technol. 2015;52:7588–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tonutti I, Liddle P. Aromatic plants in alcoholic beverages. A review. Flavour Fragrance J. 2010;25(5):341–50.

    Article  CAS  Google Scholar 

  94. COLDEA, Teodora Emilia, MUDURA, Elena, et al. Valorisation of aromatic plants in beverage industry: a review. Hop and Medicinal Plants, 2015;23(1/2):25–33.

    Google Scholar 

  95. Schuinaa GL, Solis-Méndezb A, Molina-Quinteroa M, Quelhasa JO, Oliveiraa MD, Del Bianchia VL. Application of pau-tenente (Quassia amara L.) as hop replacement in brazilian low-bitter beer. Chem Eng. 2020;79.

    Google Scholar 

  96. Brendel S, Hofmann T, Granvogl M. Dry-hopping to modify the aroma of alcohol-free beer on a molecular level—Loss and transfer of odor-active compounds. J Agric Food Chem. 2020;68(32):8602–12.

    Article  CAS  PubMed  Google Scholar 

  97. Forster A, Gahr A. On the fate of certain hop substances during dry hopping. Brew Sci. 2013;66:94–103.

    Google Scholar 

  98. Laska M, Distel H, Hudson R. Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Senses. 1997;22(4):447–56.

    Article  CAS  PubMed  Google Scholar 

  99. Clark RA, Hewson L, Bealin-Kelly F, Hort J. The interactions of CO2, ethanol, hop acids and sweetener on flavour perception in a model beer. Chemosens Percept. 2011;4:42–54.

    Article  CAS  Google Scholar 

  100. Fiorito S, Epifano F, Marchetti L, et al. An improved method for the isolation of amarogentin, the bitter principle of yellow gentian roots. Food Chem. 2021;364:130383.

    Article  CAS  PubMed  Google Scholar 

  101. Gomes FDO, Guimarães BP, Ceola D, Ghesti GF. Advances in dry hopping for industrial brewing: a review. Food Sci Technol. 2021;42.

    Google Scholar 

  102. Saffarionpour S, Ottens M. Recent advances in techniques for flavor recovery in liquid food processing. Food Eng Rev. 2018;10:81–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Zucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zucca, F. (2024). Alcohol Reduction: Product Challenges, Approaches, and Application of Flavors. In: Du, X., Yang, J. (eds) Flavor-Associated Applications in Health and Wellness Food Products . Springer, Cham. https://doi.org/10.1007/978-3-031-51808-9_10

Download citation

Publish with us

Policies and ethics