Skip to main content
Log in

Membrane Separation Processes for the Beer Industry: a Review and State of the Art

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Beer is one of the most consumed beverages in the world, placing the brewing sector in a strategic economic position in the food industry. Beer production has a series of physical and chemical steps that are technically intensive when the production scale is increased. Although the production techniques have been improving for hundreds of years, many breweries still employ traditional techniques. The increasing consumption of beer and the competitive market have led the industry to search for alternative technologies to produce a better beer with reduced prices. Membrane separation processes are interesting alternatives that may be utilised in several steps of beer production and may replace some traditional and time-consuming techniques. The objective of this study is to summarise and present a literature survey of the membrane separation processes that are currently applied in the beer industry and those processes that have potential for future applications. The potential of microfiltration, ultrafiltration, reverse osmosis, pervaporation, and gas separation to accomplish almost all solid–liquid–gas separations in a brewery is discussed, providing a clear outline for researchers on the main aspects and developments of the beer-membrane field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfa-Laval. (2003). Innovation in beer filtration gathers momentum. Lund, Sweden. Retrieved from http://www.alfalaval.com/about-us/press/product-press/Documents/071106_cross_flow_en.pdf

  • Alfa-Laval. (2007). Top end beer from cross-flow filters. Filtration & Separation, 44(2), 40–41. Retrieved from http://www.sciencedirect.com/science/article/pii/S0015188207700575.

  • Alfa-Laval. (2013). Alfa Laval beer recovery system. Alfa-Laval. Retrieved from http://www.alfalaval.com/solution-finder/products/membrane-filtration-systems/Documents/PCM00069EN_LOWRES_beer recovery.pdf

  • Almonacid, S. F., Nájera, A. L., Young, M. E., Simpson, R. J., & Acevedo, C. A. (2010). A comparative study of stout beer batch fermentation using free and microencapsulated yeasts. Food and Bioprocess Technology, 5(2), 750–758.

    Article  Google Scholar 

  • Asano, S., Suzuki, K., Iijima, K., Motoyama, Y., Kuriyama, H., & Kitagawa, Y. (2007). Effects of morphological changes in beer-spoilage lactic acid bacteria on membrane filtration in breweries. Journal of Bioscience and Bioengineering, 104(4), 334–338.

    Article  CAS  Google Scholar 

  • Baker, R. W. (2004). Membrane technology and applications (2nd ed., p. 545). Chichester, England: Wiley.

    Book  Google Scholar 

  • Bamforth, C. W. (2003). Beer—tap into the art and science of brewing (2nd edition, p. 246). New York: Oxford University Press Inc.

    Google Scholar 

  • Bamforth, C. W. (2006). Brewing: new technologies. (C. W. Bamforth, Ed.) (p. 501). Boca Raton: CRC Press Inc.

    Book  Google Scholar 

  • Bamforth, C. W. (2008). Beer: a quality perspective (Handbook of Alcoholic Beverages). (I. Russel, C. W. Bamforth, & G. G. Stewart, Eds.) (1st Edition, p. 287). California: Academic Press.

    Google Scholar 

  • Barchet, R. (1993). Hot trub, formation and removal. Brewing Techniques, 1(4). Retrieved from http://morebeer.com/brewingtechniques/library/backissues/issue1.4/barchet.html

  • Barchet, R. (1994). Cold trub: implications for finished beer and methods of removal. Brewing Techniques, 2(2).

  • Barth, N. (1989). Process for the production of fermented drinks with reduced alcohol content. US patent No 4804554.

  • Benítez, E. I., Amezaga, N. M. J. M., Sosa, G. L., Peruchena, N. M., & Lozano, J. E. (2013). Turbidimetric behavior of colloidal particles in beer before filtration process. Food and Bioprocess Technology, 6(4), 1082–1090.

    Article  Google Scholar 

  • Blanpain, P., & Lalande, M. (1997). Investigation of fouling mechanisms governing permeate flux in the crossflow microfiltration of beer. Filtration and Separation, 34(10), 1065–1069.

    Article  Google Scholar 

  • Blanpain-Avet, P., Doubrovine, N., Lafforgue, C., & Lalande, M. (1999a). The effect of oscillatory flow on crossflow microfiltration of beer in a tubular mineral membrane system—membrane fouling resistance decrease and energetic considerations. Journal of Membrane Science, 152(2), 151–174.

    Article  CAS  Google Scholar 

  • Blanpain-Avet, P., Fillaudeau, L., & Lalande, M. (1999b). Investigation of mechanisms governing membrane fouling and protein rejection in the sterile microfiltration of beer with an organic membrane. Food and Bioproducts Processing, 77(2), 75–89.

    Article  CAS  Google Scholar 

  • BMG. (2011). World beer production increased again in 2010. (B. Manager, Ed.). Beverage Manager. Retrieved August 28, 2013, from http://beveragemanager.net

  • Bock, M., & Oechsle, D. (1999). Beer recovery from spent yeast with Keraflux membranes. The Brewer, 85(7), 340–345.

    Google Scholar 

  • Brányik, T., Silva, D. P., Baszczynski, M., Lehnert, R., & Almeida e Silva, J. B. (2012). A review of methods of low alcohol and alcohol-free beer production. Journal of Food Engineering, 108(4), 493–506.

    Article  Google Scholar 

  • BRAUWELT. (2000). Non-dispersive diffusion for nitrogenation. Brauwelt International.

  • Briggs, D. E., Boulton, C. A., Brookes, P. A., & Stevens, R. (2004). Brewing: science and practice (1st edition, p. 864). Boca Raton: CRC Press Inc.

    Book  Google Scholar 

  • Brunetti, A., Scura, F., Barbieri, G., & Drioli, E. (2010). Membrane technologies for CO2 separation. Journal of Membrane Science, 359(1–2), 115–125.

    Article  CAS  Google Scholar 

  • Brüschke, H. E. A. (1990). Removal of ethanol from aqueous streams by pervaporation. Desalination, 77, 323–330.

    Article  Google Scholar 

  • Bühler, T., Burell, K., Eggars, H. U., Reed, R. J. R., & Olajire, A. A. (1993). The application of membranes for new approach to brewery operations. In European Brewing Convention Congress (pp. 691–700). Olso: Oxford.

    Google Scholar 

  • Burrell, K. J., Reed, R. J. R., Burrell, B. K. J., Hall, L., & Road, H. (1994). Crossflow microfiltration of beer: laboratory-scale studies on the effect of pore size. Filtration and Separation, 31(4), 399–406.

    Article  Google Scholar 

  • Catarino, M., & Mendes, A. (2011). Non-alcoholic beer—a new industrial process. Separation and Purification Technology, 79(3), 342–351.

    Article  CAS  Google Scholar 

  • Catarino, M., Mendes, A., Madeira, L., & Ferreira, A. (2006). Beer dealcoholization by reverse osmosis. Desalination, 200, 397–399.

    Article  CAS  Google Scholar 

  • Catarino, M., Mendes, A., Madeira, L. M., & Ferreira, A. (2007). Alcohol removal from beer by reverse osmosis. Separation Science and Technology, 42(13), 3011–3027.

    Article  CAS  Google Scholar 

  • Catarino, M., Ferreira, A., & Mendes, A. (2009). Study and optimization of aroma recovery from beer by pervaporation. Journal of Membrane Science, 341(1–2), 51–59.

    Article  CAS  Google Scholar 

  • Czekaj, P., López, F., & Güell, C. (2000). Membrane fouling during microfiltration of fermented beverages. Journal of Membrane Science, 166(2), 199–212.

    Article  CAS  Google Scholar 

  • Daoud, I. (1985). Crossflow filtration: an alternative for mash separation. Brewing and Distilling International, 23(5), 31–32.

    Google Scholar 

  • Daoud, I. (1989). Separation of wort from mash. US patent No 4844932.

  • Daoud, I. (1992). Crossflow filtration: an alternative mash separation. The Brewhouse BDI, 5, 18–19.

    Google Scholar 

  • Daufin, G., Escudier, J. P., Carrère, H., Bérot, S., Fillaudeau, L., Decloux, M., … Carre, H. (2001). Recent and emerging applications of membrane processes in the food and dairy industry. Institution of Chemical Engineers, 79(June), 89–102.

  • De Castro, M. D. L., Capote, F. P., & Ávila, N. S. (2008). Is dialysis alive as a membrane-based separation technique? TrAC - Trends in Analytical Chemistry, 27(4), 315–326.

    Article  Google Scholar 

  • Delvaux, F., Deams, V., Vanmachelen, H., Neven, H., & Derdelinckx, G. (1995). Retention of beer flavours by the choice of appropriate glass. Proceedings of the EBC Congress, 25, 533–542.

    Google Scholar 

  • Diban, N., Urtiaga, A., & Ortiz, I. (2008). Recovery of key components of bilberry aroma using a commercial pervaporation membrane. Desalination, 224(1–3), 34–39.

    Article  CAS  Google Scholar 

  • Drioli, E., & Fontananova, E. (2004). Membrane technology and sustainable growth. Chemical Engineering Research and Design, 82(12), 1557–1562.

    Article  CAS  Google Scholar 

  • Echt, W., & Meister, P. (2009). Design, fabrication and startup of an offshore membrane CO2 removal system . (G. P. Association, Ed.)88th Annual Convention - UOP LLC. Gas Processors Association.

  • Esslinger, H. M. (1990). Technological evaluation of various methods for recovering beer from spent yeast. In E. B. Convention (Ed.), Proceedings of European Brewing Convention (pp. 140–150). Leuven - Belgium: The Brewers of Europe.

  • Eumann, M., & Schildbach, S. (2012). 125th Anniversary Review: water sources and treatment in brewing. Journal of the Institute of Brewing, 118(1), 12–21. doi:10.1002/jib.18.

    Article  CAS  Google Scholar 

  • Favre, E. (2007). Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? Journal of Membrane Science, 294, 50–59.

    Article  CAS  Google Scholar 

  • Ferreira, I. M. P. L. V. O., Pinho, O., Vieira, E., & Tavarela, J. G. (2010). Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends in Food Science and Technology, 21(2), 77–84.

    Article  CAS  Google Scholar 

  • Fillaudeau, L., & Carrère, H. (2002). Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes. Journal of Membrane Science, 196(1), 39–57.

    Article  CAS  Google Scholar 

  • Fillaudeau, L., Blanpain-Avet, P., & Daufin, G. (2006). Water, wastewater and waste management in brewing industries. Journal of Cleaner Production, 14(5), 463–471.

    Article  Google Scholar 

  • Fillaudeau, L., Boissier, B., Moreau, A., Blanpain-avet, P., Ermolaev, S., Jitariouk, N., et al. (2007). Investigation of rotating and vibrating filtration for clarification of rough beer. Journal of Food Engineering, 80(1), 206–217.

    Article  CAS  Google Scholar 

  • Galitsky, C., Martin, N., Worrell, E., Lehman, B., & Worrel, E. (2003). Energy efficiency improvement and cost saving opportunities for breweries (p. 74). Berkeley: University of California.

    Book  Google Scholar 

  • Gan, Q. (2001). Beer clarification by cross-flow microfiltration—effect of surface hydrodynamics and reversed membrane morphology. Chemical Engineering and Processing Process Intensification, 40(5), 413–419.

    Article  CAS  Google Scholar 

  • Gan, Q., Field, R. W., McKechnie, M. T., Shaughnessy, C. L. O., Bird, M. R., England, R., … O’Shaughnessy, C. L. (1997). Beer clarification by cross-flow microfiltration: fouling mechanisms and flux enhancement. Institution of Chemical Engineers, 75(1), 6.

  • Gan, Q., Howell, J. A., Field, R. W., England, R., Bird, M. R., & McKechinie, M. T. (1999). Synergetic cleaning procedure for a ceramic membrane fouled by beer microfiltration. Journal of Membrane Science, 155(2), 277–289.

    Article  CAS  Google Scholar 

  • Gan, Q., Howell, J. . A., Field, R. . W., England, R., Bird, M. . R., O’Shaughnessy, C. L., … O’Shaughnessy, C. . (2001). Beer clarification by microfiltration—product quality control and fractionation of particles and macromolecules. Journal of Membrane Science, 194(2), 185–196.

  • GEA. (2009). 100 Years Beer Separation with GEA Westfalia Separator. GEA Westfalia Separator Division. GEA Westfalia Separator Gmbh. Retrieved from http://www.westfalia-separator.com/fileadmin/Media/PDFs/Digest/SeparatorsDigest-2009-3-EN-100-Years-beer-separation.pdf.

  • GEA. (2012). CO2 recovery: Simple application—double profit. Kitzingen—Germany: GEA Process Engineering. Retrieved from http://www.geabrewery.com/geabrewery/cmsresources.nsf/filenames/Refrigeration_E_0712.pdf/$file/Refrigeration_E_0712.pdf.

  • GEA. (2013). Systems and processes in breweries. GEA Westfalia Separator Division. Oelde. Retrieved from http://www.westfalia-separator.com/fileadmin/Media/PDFs/Brochures/Breweries-BE-12-10-0004.pdf.

  • Granite, E. J., & O’Brien, T. (2005). Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, 86(14–15), 1423–1434.

    Article  CAS  Google Scholar 

  • Gupta, M., Abu-Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328.

    Article  CAS  Google Scholar 

  • Ho, S. V, & Sheridan, P. W. (2002). Membrane process for making enhanced flavor fluids. US patent No 6419829.

  • Hurt, E., Zulewska, J., Newbold, M., & Barbano, D. M. (2010, December 1). Micellar casein concentrate production with a 3X, 3-stage, uniform transmembrane pressure ceramic membrane process at 50°C1. Journal of Dairy Science. American Dairy Science Association.

  • Karlsson, H. O. E., & Tragardh, G. (1996). Applications of pervaporation in food processing. Trends in Food Science and Technology, 7(3), 78–83.

    Article  CAS  Google Scholar 

  • Kavanagh, T. E., Clarke, B. J., Gee, P. S., Miles, M., & Nicholson, B. N. (1991). Volatile flavor compounds in low alcohol beers. Technical Quarterly—Master Brewers Association of the Americas, 28(3), 111–118.

    CAS  Google Scholar 

  • Khan, F. I., & Ghoshal, A. K. (2000). Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13(6), 527–545.

    Article  Google Scholar 

  • Kosseva, M. R. (2010). Immobilization of microbial cells in food fermentation processes. Food and Bioprocess Technology, 4(6), 1089–1118.

    Article  Google Scholar 

  • Kuiper, S., van Rijn, C., Nijdam, W., Raspe, O., van Wolferen, H., Krijnen, G., et al. (2002). Filtration of lager beer with microsieves: flux, permeate haze and in-line microscope observations. Journal of Membrane Science, 196(2), 159–170.

    Article  CAS  Google Scholar 

  • Light, W. G. (1986). Continuous recycling process for the production of low alcoholic beverages. US patent No 4617127.

  • Light, W. G., Mooney, L. A., Chu, H. C., & Wood, S. K. (1986). Alcohol removal from beer by reverse osmosis. AIChE Symposium Series, 82, 1–8.

    CAS  Google Scholar 

  • Magalhães, P. J., Dostalek, P., Cruz, J. M., Guido, L. F., & Barros, A. A. (2008). The impact of a xanthohumol-enriched hop product on the behavior of xanthohumol and isoxanthohumol in pale and dark beers: a pilot scale approach. Journal Institute of Brewing, 114(3), 246–256.

    Article  Google Scholar 

  • Matsumoto, K., Katsuyama, S. S., & Ohya, H. (1987). Separation of yeast by cross-flow filtration with backwashing. Journal of Fermentation Technology, 65(1), 77–83.

    Article  CAS  Google Scholar 

  • Mellcom. (2012). Carbon dioxide recovery plant. New Delhi—India: Mellcon Engineers Pvt Ltd. Retrieved from http://www.mellcon.com/co2-recovery-plant.asp

  • Montanari, L., Marconi, O., Mayer, H., & Fantozzi, P. (2009). Production of alcohol-free beer. In V. R. Preedy (Ed.), Beer in health and disease prevention (pp. 61–75). Burlington: Elsevier Inc.

    Chapter  Google Scholar 

  • Moonen, H., & Niefind, H. J. (1982). Alcohol reduction in beer by means of dialysis. Desalination, 41(3), 327–335.

    Article  CAS  Google Scholar 

  • Murkes, J. (1986). Low shear and high shear crossflow filtration. Filtration and Separation, 23(6), 364–366.

    CAS  Google Scholar 

  • Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1–14.

    Article  CAS  Google Scholar 

  • O’Reilly, S. M. G., Lummis, D. J., & Molzahn, S. W. (1987). The application of ceramic filtration for the recovery of beer from tank bottoms and in beer filtration. In Proceedings of European Brewing Convention (pp. 639–646). Madrid - Spain.

  • Ohlrogge, K., Wind, J., & Brinkmann, T. (2010). Membranes for recovery of volatile organic compounds. In Comprehensive Membrane Science and Engineering (pp. 213–242). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Pall. (2013). Keraflux - TFF System. Pall Corporation. Retrieved from http://www.pall.com/main/food-and-beverage/product.page?id=53876.

  • Pentair. (2012). Beverages systems. Pentair Water Process Technology BV. Retrieved from http://pentair.com/MarketLanding/resources/images/7662.pdf.

  • Pentair. (2013). Beer membrane filtration. Pentair Water Process Technology BV2. Retrieved from http://www.norit-bmf.com/facts & figures/.

  • Perry, E. J., & Coleman, A. R. (1987). Purification of carbon dioxide for use in brewing. US patent No 4699642.

  • Petkovska, M., Leskosek, I., & Nedovic, V. (1997a). Analysis of mass transfer in beer diafiltration with cellulose-based and polysulfone membranes. Institute of Chemical Engineers, 75(4), 247–252.

    CAS  Google Scholar 

  • Petkovska, M., Leskosek, I., & Nedovic, V. (1997b). Analysis of mass transfer in beer diafiltration with cellulose-based and polysulfone membranes. Food and Bioproducts Processing, 75(4), 247–252.

    Article  CAS  Google Scholar 

  • Pilipovik, M. V., & Riverol, C. (2005). Assessing dealcoholization systems based on reverse osmosis. Journal of Food Engineering, 69(4), 437–441.

    Article  Google Scholar 

  • Priest, F. G., & Stewart, G. G. (Eds.). (2006). Handbook of brewing (2nd Edition, p. 830). Boca Raton: CRC Press Inc.

    Google Scholar 

  • Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz da Costa, J. C., et al. (2012). The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94–95, 123–154.

    Article  Google Scholar 

  • Sandblom, R. M. (1978). Filtering process. US patent No 4105547.

  • Schneider, J., & Weisser, H. (2004). Diafiltration of mash. Journal of the Institute of Brewing, 110(4), 326–334.

    Article  Google Scholar 

  • Schneider, J., Krottenthaler, M., Back, W., & Weisser, H. (2005). Study on the membrane filtration of mash with particular respect to the quality of wort and beer. Journal of the Institute of Brewing, 111, 380–387.

    Article  CAS  Google Scholar 

  • Sensidoni, M., Marconi, O., Perretti, G., Freeman, G., & Fantozzi, P. (2011). Monitoring of beer filtration using photon correlation spectroscopy (PCS). Journal of the Institute of Brewing, 117(4), 639–646.

    Article  CAS  Google Scholar 

  • Shotipruk, A., Kittianong, P., Suphantharika, M., & Muangnapoh, C. (2005). Application of rotary microfiltration in debittering process of spent brewer’s yeast. Bioresource Technology, 96(17), 1851–1859.

    Article  CAS  Google Scholar 

  • Sohrabvandi, S., Mousavi, S. M., Razavi, S. H., Mortazavian, A. M., & Rezaei, K. (2010). Alcohol-free beer: methods of production, sensorial defects, and healthful effects. Food Reviews International, 26(4), 335–352.

    Article  Google Scholar 

  • Starbard, N. (2008). Beverage industry microfiltration: a comprehensive guide (p. 303). Iowa: Wiley-Blackwell.

    Google Scholar 

  • Stein, W. (1993). Dealcoholization of beer. Technical Quarterly—Master Brewers Association of the Americas, 30(2), 54–57.

    CAS  Google Scholar 

  • Stewart, D. C., Hawthorne, D., & Evans, D. E. (1998). Cold sterile filtration: a small scale filtration test and investigation of membrane plugging. Journal of the Institute of Brewing, 104, 321–326.

    Article  Google Scholar 

  • Stopka, J., Schlosser, S., Dömény, Z., & Smogrovicova, D. (2000). Flux decline in microfiltration of beer and related solutions of model foulants through ceramic membranes. Polish Journal of Environmental Studies, 9(1), 65–69.

    CAS  Google Scholar 

  • Tan, S., Li, L., Xiao, Z., Wu, Y., & Zhang, Z. (2005). Pervaporation of alcoholic beverages—the coupling effects between ethanol and aroma compounds. Journal of Membrane Science, 264(1–2), 129–136.

    Article  CAS  Google Scholar 

  • Tang, D.-S., Yin, G.-M., He, Y.-Z., Hu, S.-Q., Li, B., Li, L., … Borthakur, D. (2009). Recovery of protein from brewer’s spent grain by ultrafiltration. Biochemical Engineering Journal, 48(1), 1–5.

    Google Scholar 

  • Tilgner, H. G., & Schmitz, F. J. (1987). Process for reducing alcohol in fermented beverages by means of dialysis. US patent No 4664918.

  • Tripp, M. L., Rader, S. R., Rao, S. C., & Ryder, D. S. (1997). Flavored malt beverages prepared by using ultrafiltration methods. US patent No 5618572.

  • Vadi, P., & Rizvi, S. S. (2001). Experimental evaluation of a uniform transmembrane pressure crossflow microfiltration unit for the concentration of micellar casein from skim milk. Journal of Membrane Science, 189(1), 69–82.

    Article  CAS  Google Scholar 

  • Van der Sman, R. G. M., Vollebregt, H. M., Mepschen, A., & Noordman, T. R. (2012). Review of hypotheses for fouling during beer clarification using membranes. Journal of Membrane Science, 396, 22–31.

    Article  Google Scholar 

  • Van Rijn, C. J. M., Nijdam, W., van der Stappen, L. A. V. G., Raspe, O. J. A., Broens, l., & van Hoof, S. C. J. M. (1997). Innovation in yeast cell filtration: cost saving technology with high flux membranes. In Proceedings of the EBC Congress (pp. 501–507).

  • Wenten, I. G., Taylour, J., Skou, F., Rasmussen, A., & Jonsson, G. (1994). Membrane cleaning after beer clarification. In Proceedings of European Brewing Convention (pp. 188–195). Sydney—Australia: University of New South Wales.

  • Wittemann. (2012). Carbon dioxide recovery (Brewery). Palm Coast—USA: Wittemann Company. Retrieved from http://www.pureco2nfidence.com/launch/images/downloads/literature/brewery/brewery_recovery_literature.pdf.

  • Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., et al. (2008). Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences, 20(1), 14–27.

    Article  CAS  Google Scholar 

  • Yazdanshenas, M., Soltanieh, M., Tabatabaei, N., Reza, S. A., Fillaudeau, L., & Tabatabaei Nejad, S. A. R. (2010). Cross-flow microfiltration of rough non-alcoholic beer and diluted malt extract with tubular ceramic membranes: investigation of fouling mechanisms. Journal of Membrane Science, 362(1–2), 306–316.

    Article  CAS  Google Scholar 

  • Yeo, Z. Y., Chew, T. L., Zhu, P. W., Mohamed, A. R., & Chai, S.-P. (2012). Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. Journal of Natural Gas Chemistry, 21(3), 282–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Level Personnel (CAPES), and the Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) of Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Ambrosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosi, A., Cardozo, N.S.M. & Tessaro, I.C. Membrane Separation Processes for the Beer Industry: a Review and State of the Art. Food Bioprocess Technol 7, 921–936 (2014). https://doi.org/10.1007/s11947-014-1275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1275-0

Keywords

Navigation