Skip to main content

Effect of Different OLR and Mixture Ratios on Biogas Production Using Goat Dung and Maize Silage

  • Conference paper
  • First Online:
15th International Congress on Agricultural Mechanization and Energy in Agriculture (ANKAgEng 2023)

Abstract

The aim of this study is to determine the effect of the use of goat excrement, which has not been used much in biogas research, and the use of maize silage on biogas production. The maize silage used does not contain cobs and maize kernels. It was studied under mesophilic conditions in a batch fermentation system with a hydraulic retention time (HRT) of 40 days. In the experiments, anaerobic fermenters with a total volume of 3 L each, with a heating and automatic mixing system were used. The amount of biogas produced was measured using the water displacement principle and the biogas content was measured with a biogas analyzer. Trials were carried out using two different mixing ratios at the same (0.5 grVS/l day) organic loading rate (OLR) and using the same mixing ratio at two different OLR values. The highest biogas production (approximately 40 L) was measured at an OLR value of 0.8 gVS/l d using 65% goat manure and 35% silage in the mixture. Also, the highest methane content was obtained in this application. Although increasing the amount of silage with a constant OLR resulted in a small increase in the biogas generation, the methane content decreased. It was concluded that goat excrement can be used to generate biogas as a substrate.

U. Alkan and K. Alibaş—Emeritus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Masri MR (2001) Changes in biogas production due to different ratios of some animal and agricultural wastes. Biores Technol 77:97–100

    Article  CAS  Google Scholar 

  2. Alvarez R, Liden G (2009) Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenerg 33(3):527–533

    Article  CAS  Google Scholar 

  3. Amon T, Amon B, Kryvoruchko V, Bodiroza V, Pötsch E, Zollitsch W (2006) Optimising methane yield from anaerobic digestion of manure: Effects of dairy systems and of glycerine supplementation. Int Congr Ser 1293:217–220

    Article  CAS  Google Scholar 

  4. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agr Ecosyst Environ 118:173–182

    Article  CAS  Google Scholar 

  5. Biswas J, Chowdhury R, Bhattacharya P (2007) Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues. Biomass Bioenergy 31:80–86

    Article  CAS  Google Scholar 

  6. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5(1):95–111

    Article  CAS  Google Scholar 

  7. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1–2):83–114

    Article  CAS  Google Scholar 

  8. Hammad M, Badarneh D, Tahboub K (1999) Evaluating variable organic waste to produce methane. Energ. Convers Manag. 40:1463–1475

    Article  CAS  Google Scholar 

  9. Macias-Corral M et al (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Biores Technol 99:8288–8293

    Article  CAS  Google Scholar 

  10. Martin-Ryals A D (2012) Evaluating the potential for improving anaerobic digestion of cellulosic waste via routine bioaugmentation and alkaline pretreatment. Master Thesis. Agricultural and Biological Engineering in the Graduate College of the University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/34285, Accessed 20 Jan 2013

  11. Tong X, Smith LH, McCarty PL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255

    Article  CAS  Google Scholar 

  12. Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109:263–274

    Article  CAS  Google Scholar 

  13. Nkuna R, Roopnarain A, Rashama C, Adeleke R (2022) Insights into organic loading rates of anaerobic digestion for biogas production: a review. Crit Rev Biotechnol 42(4):487–507

    CAS  Google Scholar 

  14. Abdul Aziz NIH, Hanafiah MM, Mohamed Ali MY (2019) Sustainable biogas production from agrowaste and effluents - A promising step for small-scale industry income. Renewable Energy 132:363–369

    Article  CAS  Google Scholar 

  15. Spagni A, Casu S, Farina R (2010) Effect of the organic loading rate on biogas composition incontinuous fermentative hydrogen production. J Environ Sci Health Part A 45:1475–1481

    Article  CAS  Google Scholar 

  16. Turkish Statistical Institute (2023) TUIK statistical database, Ankara

    Google Scholar 

  17. Association of Official Analytical Collaboration International (2000) Official methods of analysis of AOAC international. 17th edn. AOAC Int. Gaithersburg, MD., USA

    Google Scholar 

  18. Schievano A, D’Imporzano G, Adani F (2009) Substituting energy crops with organic wastes and agro-industrial residues for biogas production. J Environ Manag 90:2537–2541

    Article  CAS  Google Scholar 

  19. Pan-in S, Sukasem N (2017) Methane production potential from anaerobic co-digestion of different animal dungs and sweet corn residuals. Energ. Procedia 138:943–948

    Article  CAS  Google Scholar 

  20. Hanafıah MM et al (2017) Biogas production from goat and chicken manure in Malaysia. Appl Ecol Environ Res 15(3):529–535

    Article  Google Scholar 

  21. Makki EK, Eljack BE (2003) Seasonal variation and production of biogas from three types of animal dung. Ahfad J. 20(2):18–25

    Google Scholar 

  22. Ayhan A, Qingyu L, Alibaş K, Ünal H (2013) Biogas production from maize silage and dairy cattle manure. J Anim Vet Adv 12(5):553–556

    Google Scholar 

  23. Schattauer A, Weiland P (2004) Handreichung Biogasgewinnung und – nutzung. Final Report. Förderkennzeichen 22027200. Fachagentur Nachwachsende Rohstoffe e.V. (Ed.), Gülzow

    Google Scholar 

  24. Amon T, Kryvoruchko V, Amon B (2011) Methane production from maize, grassland and animal manures through anaerobic digestion. http://www.ramiran.net/doc04/Proceedings%2004/T_Amon.pdf , Accessed 10 May 2012

  25. Madigan MT, Martinko JM, Parker J (2000) Brock Mikrobiologie. Spektrum Akademischer Verlag, GmbH Heidelberg, Berlin

    Google Scholar 

  26. Sowunmi A, Mamone RM, Bastidas-Oyanedel JR, Schmidt JE (2016) Biogas potential for electricity generation in the Emirate of Abu Dhabi. Biomass Conversion Biorefinery 6:39–47

    Article  CAS  Google Scholar 

  27. Yang S et al (2023) Biogas production of food waste with in-situ sulfide control under high organic loading in two-stage anaerobic digestion process: Strategy and response of microbial community. Biores Technol 373:128712

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project received funding from the Bursa Uludağ University Scientific Research Projects Management Unit with project no. OUAP(Z)-2015/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslı Ayhan Arslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arslan, A.A., Altınçekiç, Ş.Ö., Çarpıcı, E.B., Ünal, H., Alkan, U., Alibaş, K. (2024). Effect of Different OLR and Mixture Ratios on Biogas Production Using Goat Dung and Maize Silage. In: Cavallo, E., Auat Cheein, F., Marinello, F., Saçılık, K., Muthukumarappan, K., Abhilash, P.C. (eds) 15th International Congress on Agricultural Mechanization and Energy in Agriculture. ANKAgEng 2023. Lecture Notes in Civil Engineering, vol 458. Springer, Cham. https://doi.org/10.1007/978-3-031-51579-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51579-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51578-1

  • Online ISBN: 978-3-031-51579-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics