Skip to main content

Abstract

Cellulosic fibers are the widely used fiber class all over the world. These fibers are biodegradable, soft, hydrophilic, breathable, and inexpensive. They are highly preferred in clothing because of their extraordinary features. These fiber types are dyed with sulfur and also direct and reactive dyestuffs, but mostly they are dyed with reactive dyestuffs with good fastness properties and bright colors. High proportions of salt are used to increase dyeability with conventional reactive dyestuffs. Reactive dye wastewater containing high concentrations of electrolytes is dangerous for the environment and difficult to treat. In addition, the increasing prices of wastewater treatment have been one of the main concerns worldwide. As the increased salinity of rivers affects the biochemistry of aquatic life, dyeing technologies with less salt or no salt have become popular today. The cationization of cellulosic fibers has been a promising solution to this problem. This process has been tried to increase the substantivity of reactive dyes to the fiber without using salt by modifying the cellulosic fibers by using various cationizing chemicals. In this section, cellulosic fibers, dyeing processes for these fibers, the importance of water, cationization processes of cellulosic fibers, and related studies will be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhishek, S., Samir, O. M., Annadurai, V., Urs, R. G., Mahesh, S. S., & Somashekar, R. (2005). Role of micro-crystalline parameters in the physical properties of cotton fibers. European Polymer Journal, 41(12), 2916–2922.

    Article  CAS  Google Scholar 

  • Ahmed, N. S. (2005). The use of sodium edate in the dyeing of cotton with reactive dyes. Dyes and Pigments, 65(3), 221–225.

    Article  CAS  Google Scholar 

  • Ahmed, M., et al. (2022). Cationisation of cotton with natural source based gelatin for salt-free reactive dyeing of cationised cotton. Journal of Natural Fibers, 19, 1–14.

    Article  Google Scholar 

  • Akin, D. E. (2013). Linen most useful: Perspectives on structure, chemistry, and enzymes for retting flax. ISRN Biotechnology, 2013, 186534.

    Article  Google Scholar 

  • Akyol, G. (2022). Nylon kumaşların reaktif boyarmaddelerle boyanmasında mordan kullanımının araştırılması (Master’s thesis, Bursa Uludağ Üniversitesi).

    Google Scholar 

  • Alşan, H. G. (2019). Reaktif boyarmaddelere mikrodalga ortamında boyanma kinetiğinin incelenmesi (Doctoral dissertation, Sakarya Universitesi, Turkey).

    Google Scholar 

  • Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 79, 115–128.

    Article  Google Scholar 

  • Ardıç, Y. (2007). Selülozik Liflerin Farklı şartlarda Fibrilleşme ve Yorulma Davranışlarının Incelenmesi (Doctoral dissertation, Bursa Uludag University, Turkey).

    Google Scholar 

  • Arivithamani, N., & Dev, V. R. G. (2017). Sustainable bulk scale cationization of cotton hosiery fabrics for salt-free reactive dyeing process. Journal of Cleaner Production, 149, 1188–1199.

    Article  CAS  Google Scholar 

  • Arivithamani, N., & Giri Dev, V. R. (2018). Characterization and comparison of salt-free reactive dyed cationized cotton hosiery fabrics with that of conventional dyed cotton fabrics. Journal of Cleaner Production, 183, 579–589.

    Article  CAS  Google Scholar 

  • Ashenafi, B., Berhane, H., Gashawbeza, H., & Dessie, A. (2020). Studies on dyeing properties of chitosan modified cellulosic fiber. Journal of Textile Engineering & Fashion Technology, 6, 37–42.

    Google Scholar 

  • Atav, R. (2017). Chemical modification of linen fabrics for salt free dyeing with anionic dyes. Industria Textila, 68(5), 357–365.

    Article  CAS  Google Scholar 

  • Atiq, M. S., et al. (2019). Salt free sulphur black dyeing of cotton fabric after cationization. Cellulose Chemistry and Technology, 53(1–2), 155–161.

    Article  CAS  Google Scholar 

  • Aydoğan, M., Terzi, Y. E., Gizlenci, Ş., Mustafa, A. C. A. R., Alpay, E. S. E. N., & Meral, H. (2020). Türkiye’de kenevir yetiştiriciliğinin ekonomik olarak yapılabilirliği: Samsun ili Vezirköprü ilçesi örneği. Anadolu Tarım Bilimleri Dergisi, 35(1), 35–50.

    Article  Google Scholar 

  • Aysha, T. S., Ahmed, N. S., El-Sedik, M. S., Youssef, Y. A., & El-Shishtawy, R. M. (2022). Eco-friendly salt/alkali-free exhaustion dyeing of cotton fabric with reactive dyes. Scientific Reports, 12(1), 22339.

    Article  CAS  Google Scholar 

  • Baaka, N., et al. (2017). Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves. Natural Product Research, 31(1), 22–31.

    Article  CAS  Google Scholar 

  • Baaka, N., et al. (2019). Eco-friendly dyeing of modified cotton fabrics with grape pomace colorant: Optimization using full factorial design approach. Journal of Natural Fibers, 16(5), 652–661.

    Article  CAS  Google Scholar 

  • Baburşah, S. (2004). Tekstil endüstrisi atıksularının gerikazanımı ve yeniden kullanılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    Google Scholar 

  • Başer, U., & Bozoğlu, M. (2020). Türkiye’nin kenevir politikası ve piyasasına bir bakış. Tarım Ekonomisi Araştırmaları Dergisi, 6(2), 127–135.

    Google Scholar 

  • Bayraktar, N. (2011). Pamuğun katyonikleştirilmesi ve terbiye işlemlerine sağlayacağı etkilerin incelenmesi (Master’s thesis, Fen Bilimleri Enstitüsü).

    Google Scholar 

  • Benkhaya, S., M’rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Erdoğan, Ü. H. (2011). Selüloz Esasli Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanimi. Tekstil ve Mühendis, 18(82), 26–35.

    CAS  Google Scholar 

  • Burgaç, A., & Yavuz, H. (2021). Examination of desalination model parameters on a reverse osmosis desalination simulation model. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 614–621.

    Article  Google Scholar 

  • Büyükdere, A. (2008). Tekstil Endüstrisi Atıksularının Membran Teknolojileri ile Arıtılması ve Geri Kazanılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    Google Scholar 

  • Cai, T., Zhang, H., Guo, Q., Shao, H., & Hu, X. (2010). Structure and properties of cellulose fibers from ionic liquids. Journal of Applied Polymer Science, 115(2), 1047–1053.

    Article  CAS  Google Scholar 

  • Cevheri, C. İ., & Şahin, M. (2020). Dünya’da ve Türkiye’de pamuk üretiminin tekstil sektörü açisindan önemi. Harran Üniversitesi Mühendislik Dergisi, 5(2), 71–81.

    Article  Google Scholar 

  • Chattopadhyay, D. P., Chavan, R. B., & Sharma, J. K. (2007). Salt-free reactive dyeing of cotton. International Journal of Clothing Science and Technology, 19(2), 99–108.

    Article  Google Scholar 

  • Cheng, L., Duan, S., Feng, X., Zheng, K., Yang, Q., Xu, H., et al. (2020). Ramie-degumming methodologies: A short review. Journal of Engineered Fibers and Fabrics, 15, 1558925020940105.

    Article  Google Scholar 

  • Chollom, M. N., Rathilal, S., Alfa, D., & Pillay, V. L. (2015). The applicability of nanofiltration for the treatment and reuse of textile reactive dye effluent. Water SA, 41(3), 398–405.

    Article  CAS  Google Scholar 

  • Choudhury, A. K. R. (2018). Eco-friendly dyes and dyeing. Advanced Materials and Technologies for Environmental Sciences, 2, 145–176.

    Google Scholar 

  • Čorak, I., et al. (2022). Natural dyeing of modified cotton fabric with cochineal dye. Molecules, 27(3), 1100.

    Article  Google Scholar 

  • Correia, J., et al. (2020). Cationization of cotton fiber: An integrated view of cationic agents, processes variables, properties, market and future prospects. Cellulose, 27(15), 8527–8550.

    Article  CAS  Google Scholar 

  • Correia, J., et al. (2021a). Surface functionalization of greige cotton knitted fabric through plasma and cationization for dyeing with reactive and acid dyes. Cellulose, 28(15), 9971–9990.

    Article  CAS  Google Scholar 

  • Correia, J., et al. (2021b). Preparation of cationic cotton through reaction with different polyelectrolytes. Cellulose, 28, 11679.

    Article  CAS  Google Scholar 

  • Demiral, N. (2008). Pamuklu tekstil endüstrisi atık sularının membran teknolojisi ile geri kazanımı (Master’s thesis, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü).

    Google Scholar 

  • Doyuran, Z. (2010). Pamuklu kumaşın mikrodalga ortamında reaktif boyarmaddelerle boyanması (Doctoral dissertation, Sakarya Universitesi, Turkey).

    Google Scholar 

  • Duan, L., Yu, W., & Li, Z. (2017). Analysis of structural changes in jute fibers after peracetic acid treatment. Journal of Engineered Fibers and Fabrics, 12(1), 155892501701200104.

    Article  Google Scholar 

  • Dumanoğlu, Z. (2020). Keten (Linum usitatissimum L.) Bitkisi Tohumlarının Genel Özellikleri. Bütünleyici ve Anadolu Tıbbı Dergisi, 2(1), 3–9.

    Google Scholar 

  • El Harfi, S., & El Harfi, A. (2017). Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science, 3(3), 311–320.

    Google Scholar 

  • El-Nemr, A. (2012). Non-conventional textile waste water treatment. Nova Science Publishers.

    Google Scholar 

  • El-Shishtawy, R. M., Youssef, Y. A., Ahmed, N. S., & Mousa, A. A. (2007). The use of sodium edate in dyeing: II. Union dyeing of cotton/wool blend with hetero bi-functional reactive dyes. Dyes and Pigments, 72(1), 57–65.

    Article  Google Scholar 

  • Eren, H. A., Kurcan, P., & Pervin, A. N. İ. Ş. (2007). Boyamada kullanılan yardımcı kimyasal maddelerin reaktif boyama atık sularının ozonlanmasına etkileri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 12(2), 53–60.

    Google Scholar 

  • Ezgi, A. K. A. R., Bulut, M. O., & Baydar, H. (2013). Katyonikleştirilmiş pamuklu kumaşın gül posası ile doğal boyanması ve haslık özelliklerinin incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 29(3), 213–219.

    Google Scholar 

  • Fang, L., Sun, F., Liu, Q., Chen, W., Zhou, H., Su, C., & Fang, K. (2021). A cleaner production process for high performance cotton fabrics. Journal of Cleaner Production, 317, 128500.

    Article  CAS  Google Scholar 

  • Farrell, M. J. (2012). Sustainable cotton dyeing. North Carolina State University.

    Google Scholar 

  • Genceli, E., Ürper, G., Şengür, R., Türken, T., & Koyuncu, İ. (2021). Arayüzey Polimerizasyonu Metodu ile İnce Boşluklu Nanofiltrasyon (NF) Membran Üretimi ve Performans Değerlendirmesi. Academic Platform-Journal of Engineering and Science, 9(1), 92–102.

    Google Scholar 

  • Giwa, A., & Ogunribido, A. (2012). The applications of membrane operations in the textile industry: A review. British Journal of Applied Science & Technology, 2(3), 296.

    Article  Google Scholar 

  • Gowri, R. S., Vijayaraghavan, R., & Meenambigai, P. (2014). Microbial degradation of reactive dyes – A review. International Journal of Current Microbiology and Applied Sciences, 3(3), 421–436.

    CAS  Google Scholar 

  • Grancarić, A. M., et al. (2021). Enhancement of acid dyestuff salt-free fixation by a cationizing sol-gel based coating for cotton fabric. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 125984.

    Article  Google Scholar 

  • Guan, Y., Zheng, Q. K., Mao, Y. H., Gui, M. S., & Fu, H. B. (2007). Application of polycarboxylic acid sodium salt in the dyeing of cotton fabric with reactive dyes. Journal of Applied Polymer Science, 105(2), 726–732.

    Article  CAS  Google Scholar 

  • Gül, Ü. D., & Yildiz, Y. (2020). Yüzey Aktif Madde ile Modifiye Edilmiş Atık Yer Fıstığı Kabuğunun Tekstil Boyası Biyosorpsiyonu Kapasitesinin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 7(3), 533–539.

    Article  Google Scholar 

  • Gümüşkaya, E. (2005). Selülozun kristal yapısı. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 6, 69–78.

    Google Scholar 

  • Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Dyes and pigments. Springer.

    Book  Google Scholar 

  • Haddar, W., et al. (2014a). A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): Process development and optimization using statistical analysis. Journal of Cleaner Production, 68, 114–120.

    Article  CAS  Google Scholar 

  • Haddar, W., et al. (2014b). Valorization of the leaves of fennel (Foeniculum vulgare) as natural dyes fixed on modified cotton: A dyeing process optimization based on a response surface methodology. Industrial Crops and Products, 52, 588–596.

    Article  CAS  Google Scholar 

  • Haji, A. (2017). Improved natural dyeing of cotton by plasma treatment and chitosan coating; optimization by response surface methodology. Cellulose Chemistry and Technology, 51(9–10), 975–982.

    CAS  Google Scholar 

  • Haji, A. (2020). Plasma activation and chitosan attachment on cotton and wool for improvement of dyeability and fastness properties. Pigment & Resin Technology, 49(6), 483–489.

    Article  CAS  Google Scholar 

  • Haji, A., Qavamnia, S. S., & Bizhaem, F. K. (2016a). Salt free neutral dyeing of cotton with anionic dyes using plasma and chitosan treatments. Industria Textila, 67(2), 109–113.

    CAS  Google Scholar 

  • Haji, A., Khajeh Mehrizi, M., & Hashemizad, S. (2016b). Plasma and chitosan treatments for improvement of natural dyeing and antibacterial properties of cotton and wool. Vlakna a Textil, 23(3), 86–89.

    CAS  Google Scholar 

  • Handika, S. O., Lubis, M. A. R., Sari, R. K., Laksana, R. P. B., Antov, P., Savov, V., et al. (2021). Enhancing thermal and mechanical properties of ramie fiber via impregnation by lignin-based polyurethane resin. Materials (Basel), 14(22), 6850.

    Article  CAS  Google Scholar 

  • Hauser, P. J., & Tabba, A. H. (2001). Improving the environmental and economic aspects of cotton dyeing using a cationised cotton†. Coloration Technology, 117(5), 282–288.

    Article  CAS  Google Scholar 

  • Helmy, H. M., Hauser, P., & El-Shafei, A. (2017). Influence of atmospheric plasma-induced graft polymerization of DADMAC into cotton on dyeing with acid dyes. The Journal of The Textile Institute, 108, 1–8.

    Article  Google Scholar 

  • https://arastirma.tarimorman.gov.tr/tepge

  • https://www.fao.org/faostat/en/#data/QCL

  • https://www.fao.org/faostat/en/#data/QV

  • https://www.fao.org/publications/card/en/c/CB7232EN/

  • https://www.ithib.org.tr/tr/bilgi-bankasi-raporlar-arastirma-raporlari.html

  • Jareansin, S., Sukaam, P., & Kusuktham, B. (2019). Preparation and characterization of modified cotton fabrics with responsive pH. Polymer Bulletin, 76(9), 4507–4520.

    Article  CAS  Google Scholar 

  • Jhala, A. J., & Hall, L. M. (2010). Flax (Linum usitatissimum L.): Current uses and future applications. Australian Journal of Basic and Applied Sciences, 4(9), 4304–4312.

    CAS  Google Scholar 

  • Kalia, S., Kaith, B. S., & Kaur, I. (Eds.). (2011). Cellulose fibers: Bio-and nano-polymer composites: Green chemistry and technology. Springer Science & Business Media.

    Google Scholar 

  • Kalita, B. B., Gogoi, N., & Kalita, S. (2013). Properties of ramie and its blends. International Journal of Engineering Research and Generic Science, 1(2), 1–6.

    Google Scholar 

  • Kayacan, B. B. (2010). Pamuklu tekstil endüstrisi atıksularının membran proseslerle geri kazanımının araştırılması (Master’s thesis).

    Google Scholar 

  • Kert, M., & Skoko, J. (2023). Formation of pH-responsive cotton by the adsorption of methyl orange dye. Polymers, 15(7), 1783.

    Article  CAS  Google Scholar 

  • Kertmen, N., & Yildirim, N. (2022). Farklı Karışım Oranlarında Kenevir Lifi Kullanımının ve İplik Numarasının İplik ve Kumaş Özelliklerine Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(72), 763–772.

    Google Scholar 

  • Keyikoğlu, R. (2018). Boyar maddelerin molekül ağırlığının elektrooksidasyon ve elektrokoagülasyon proseslerinde renk giderme verimine etkisi (Master’s thesis, Bursa Teknik Üniversitesi).

    Google Scholar 

  • Khanjani, Y., Farizadeh, K., & Ahmadi, S. (2011). Improve of direct dye (Direct Orange 46) sorption on pretreated cotton fabric by cationic agent. Journal of Applied Chemical Research, 18, 7–14.

    Google Scholar 

  • Khatri, A., Peerzada, M. H., Mohsin, M., & White, M. (2015). A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. Journal of Cleaner Production, 87, 50–57.

    Article  CAS  Google Scholar 

  • Kirci, H. (2001). Selüloz Türevleri ve Kullanim Yerleri. KSÜ Fen ve Mühendsilik Bilimleri Dergisi, 4, 119–130.

    Google Scholar 

  • Kolářová, K., Vosmanská, V., Rimpelová, S., & Švorčík, V. (2013). Effect of plasma treatment on cellulose fiber. Cellulose, 20, 953–961.

    Article  Google Scholar 

  • Körlü, A. E., & Bozaci, E. G. (2006). Ketenin Genel Özellikleri ve Havuzlanmasi. Tekstil ve Konfeksiyon, 16, 276–280.

    Google Scholar 

  • Kostic, M., Pejic, B., & Skundric, P. (2008). Quality of chemically modified hemp fibers. Bioresource Technology, 99(1), 94–99.

    Article  CAS  Google Scholar 

  • Koyuncu, İ. (2001). Nanofiltrasyon membrantları ile tuz gideriminde organik iyon etkisi (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    Google Scholar 

  • Kulandainathan, M. A., Patil, K., Muthukumaran, A., & Chavan, R. B. (2007). Review of the process development aspects of electrochemical dyeing: Its impact and commercial applications. Coloration Technology, 123(3), 143–151.

    Article  CAS  Google Scholar 

  • Li, Z., & Yu, C. (2014). Effect of peroxide and softness modification on properties of ramie fiber. Fibers and Polymers, 15, 2105–2111.

    Article  CAS  Google Scholar 

  • Li, Z., Li, Z., Ding, R., & Yu, C. (2016). Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Textile Research Journal, 86(5), 451–460.

    Article  CAS  Google Scholar 

  • Li, Z., Liu, W., Guan, F., Li, G., Song, Z., Yu, D., et al. (2019). Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydrate Polymers, 214, 26–33.

    Article  CAS  Google Scholar 

  • Li, Y., et al. (2022). Preparation of cationic viscose and its salt-free dyeing using reactive dye. Coloration Technology, 138(4), 378–387.

    Article  CAS  Google Scholar 

  • Lin, J., Ye, W., Baltaru, M. C., Tang, Y. P., Bernstein, N. J., Gao, P., et al. (2016). Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. Journal of Membrane Science, 514, 217–228.

    Article  CAS  Google Scholar 

  • Liu, L., & Yao, J. (2011). Salt-free dyeability of thiourea grafted cotton fabric. Fibers and Polymers, 12(1), 42–49.

    Article  Google Scholar 

  • Lu, Y., Weng, L., & Cao, X. (2006). Morphological, thermal and mechanical properties of ramie crystallites—Reinforced plasticized starch biocomposites. Carbohydrate Polymers, 63(2), 198–204.

    Article  CAS  Google Scholar 

  • Ma, W., Zhang, S., Tang, B., & Yang, J. (2005). Pretreatment of cotton with poly (vinylamine chloride) for salt-free dyeing with reactive dyes. Coloration Technology, 121(4), 193–197.

    Article  CAS  Google Scholar 

  • Ma, W., et al. (2012). Application mechanism and performance of cationic native starch and cationic hydrolyzed starch in salt-free dyeing of reactive dyes. Applied Mechanics and Materials, 161, 212–216.

    Article  CAS  Google Scholar 

  • Ma, W., Du, S., Yan, S., Yu, X., Zhang, Z., & Zhang, S. (2020a). Salt-free dyeing of modified cotton through graft polymerization with highly enhanced dye fixation and good strength properties. Polymers, 12(2), 462.

    Article  CAS  Google Scholar 

  • Ma, W., et al. (2020b). Salt-free dyeing of modified cotton through graft polymerization with highly enhanced dye fixation and good strength properties. Polymers, 12(2), 462.

    Article  CAS  Google Scholar 

  • Mahbubul Bashar, M., & Khan, M. A. (2013). An overview on surface modification of cotton fiber for apparel use. Journal of Polymers and the Environment, 21, 181–190.

    Article  CAS  Google Scholar 

  • Manaia, J. P., Manaia, A. T., & Rodriges, L. (2019). Industrial hemp fibers: An overview. Fibers, 7(12), 106.

    Article  CAS  Google Scholar 

  • Meltem, B. (2019). Tekstil endüstrisinde kullanılan boyarmaddeler, zararlı kimyasal içerikleri ve ozon oksidasyonu ile arıtılmalarının koi ve renk bileşenleri üzerine etkisi (Master’s thesis, Namık Kemal Üniversitesi).

    Google Scholar 

  • Meng, X., et al. (2021). Enhanced dyeability and wash fastness through a salt-free plasma-induced grafting of cationic monomers on cotton fabrics. Fibers and Polymers, 22(12), 3378–3384.

    Article  CAS  Google Scholar 

  • Merve, G. Ö. R. E., & Orhan, K. U. R. T. (2020). Bitkisel üretimde yeni bir trend: Kenevir. International Journal of Life Sciences and Biotechnology, 4(1), 138–157.

    Google Scholar 

  • Montazer, M., Malek, R., & Rahimi, A. (2007). Salt free reactive dyeing of cationized cotton. Fibers and Polymers, 8(6), 608–612.

    Article  CAS  Google Scholar 

  • Nallathambi, A., & Venkateshwarapuram Rengaswami, G. D. (2016). Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydrate Polymers, 152, 1–11.

    Article  CAS  Google Scholar 

  • Nam, S., & Netravali, A. N. (2006). Green composites. I. Physical properties of ramie fibers for environment-friendly green composites. Fibers and Polymers, 7, 372–379.

    Article  CAS  Google Scholar 

  • Narayan Hegde, V. (2022). Structural and elastic properties of varieties of cotton fibers. Advances in Materials and Processing Technologies, 8(4), 3990–4006.

    Article  Google Scholar 

  • Niu, T., et al. (2020). Chemical modification of cotton fabrics by a bifunctional cationic polymer for salt-free reactive dyeing. ACS Omega, 5(25), 15409–15416.

    Article  CAS  Google Scholar 

  • Niu, T., Wu, Y., Zhai, X., Sun, D., Fang, L., & Zhang, X. (2022). Investigation on multifunctional modification of cotton fabrics for salt-free dyeing, resisting crease and inhibiting bacteria. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129131.

    Article  CAS  Google Scholar 

  • Odası, Z. M. (2020). Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1. Ocak.

    Google Scholar 

  • Ojstršek, A., Doliska, A., & Fakin, D. (2008). Analysis of reactive dyestuffs and their hydrolysis by capillary electrophoresis. Analytical Sciences, 24(12), 1581–1587.

    Article  Google Scholar 

  • Oktav Bulut, M., & Akar, E. (2012). Ecological dyeing with some plant pulps on woolen yarn and cationized cotton fabric. Journal of Cleaner Production, 32, 1–9.

    Article  Google Scholar 

  • Ölmez, T., Kabdaşli, I., & Tünay, O. (2006). Reaktif boya banyolarında kullanılan iyon tutucuların yüksek pH’da ozon oksidasyonu ile renk giderimi üzerine etkisi. Su Kirlenmesi Kontrolü Dergisi, 16(1–3), 67–75.

    Google Scholar 

  • Özdemir, H. (2014). Katyonize ve normal pamuğun çeşitli boyarmaddeler ile boyama sonuçlarının karşılaştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 1(1), 14–22.

    Google Scholar 

  • Özdemir, A. O., & Tutak, M. (2013). Pamuklu örme kumaşların reaktif boya ile boyanması esnasında tuz ve boyarmadde miktarına bağlı olarak boyama kinetiğinin incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 29(3), 200–205.

    Google Scholar 

  • Özdemir, A. O., & Tutak, M. (2016). Pamuklu Kumaş Üzerinde CI Reaktif Kırmızı 194 Boyasının Relatif Fiksaj, Haslık ve K/S Renk Verimi. Erzincan University Journal of Science and Technology, 9(1), 19–28.

    Google Scholar 

  • Öztürk, S. (2011). Boyanmış pamuklu kumaşlarda bazı renk haslıklarının değişim kinetiğinin renk ölçümleri ile araştırılması (Master’s thesis, Uludağ Üniversitesi).

    Google Scholar 

  • Özüdoğru, T. (2021). Dünya ve Türkiye’de pamuk üretim ekonomisi. Tekstil ve Mühendis, 28(122), 149–161.

    Article  Google Scholar 

  • Partal, R., Basturk, I., Hocaoglu, S. M., Baban, A., & Yilmaz, E. (2022). Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: A case study. Water Resources and Industry, 27, 100174.

    Article  CAS  Google Scholar 

  • Pei, L., Li, H., Shen, J., Zhang, H., & Wang, J. (2022). Salt-free dyeing of cotton fabric and adsorption of reactive dyes in non-aqueous dyeing system: Equilibrium, kinetics, and thermodynamics. Cellulose, 29(8), 4753–4765.

    Article  Google Scholar 

  • Pejic, B. M., Kostic, M. M., Skundric, P. D., & Praskalo, J. Z. (2008). The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresource Technology, 99(15), 7152–7159.

    Article  CAS  Google Scholar 

  • Pruś, S., et al. (2022). Eco-friendly dyeing of cationised cotton with reactive dyes: Mechanism of bonding reactive dyes with CHPTAC cationised cellulose. Cellulose, 29, 4167.

    Article  Google Scholar 

  • Qin, Y. M., & Zhu, Y. X. (2011). How cotton fibers elongate: A tale of linear cell-growth mode. Current Opinion in Plant Biology, 14(1), 106–111.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S. K., Skrifvars, M., & Persson, A. (2015). A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer Reviews, 55(1), 107–162.

    Article  CAS  Google Scholar 

  • Riera-Torres, M., Gutiérrez-Bouzán, C., & Crespi, M. (2010). Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252(1–3), 53–59.

    Article  CAS  Google Scholar 

  • Rojas, O. J. (Ed.). (2016). Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials (Vol. 271). Springer.

    Google Scholar 

  • Sadeghi-Kiakhani, M., & Safapour, S. (2015). Salt-free reactive dyeing of the cotton fabric modified with chitosan-poly(propylene imine) dendrimer hybrid. Fibers and Polymers, 16(5), 1075–1081.

    Article  CAS  Google Scholar 

  • Şahin, G. (2020). Çok boyutlu bir tarim ürünü: Keten (Linum usitatissimum L.). Uluslararası Sosyal Bilimler Akademik Araştırmalar Dergisi, 4(1), 119–147.

    Google Scholar 

  • Şahinbaşkan, B. Y. (2010). Selülozik elyaf içeren materyallerin çevre dostu yöntemlerle boyanması (Doctoral dissertation, Marmara Universitesi, Turkey).

    Google Scholar 

  • Şahinbaşkan, B. Y. (2019). Kenevir Dokuma Kumaşa Enzimatik Ön İşlemlerin Etkisi. International Journal of Advances in Engineering and Pure Sciences, 31(3), 208–213.

    Article  Google Scholar 

  • Salimpour Abkenar, S., Malek, R., & Mazaheri, F. (2015). Salt-free dyeing isotherms of cotton fabric grafted with PPI dendrimers. Cellulose, 22(1), 897–910.

    Article  CAS  Google Scholar 

  • Samanta, A. K., et al. (2016). Eco-friendly salt-free reactive dyeing of cotton (muslin) fabric after cationization with amino acid from soya. Textile Research Journal, 86(20), 2179–2192.

    Article  CAS  Google Scholar 

  • Schumacher, A. G. D., Pequito, S., & Pazour, J. (2020). Industrial hemp fiber: A sustainable and economical alternative to cotton. Journal of Cleaner Production, 268, 122180.

    Article  Google Scholar 

  • Seher, K. A. Y. A., & Eren, O. N. E. R. (2020). Production, characteristics and applications of hemp fibres in textile industry. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11, 108–123.

    Google Scholar 

  • Şenel, Ü., Halil, S. U. R., & Demirtaş, M. (2012). Tekstil endüstrisinde kullanılan bazı sentetik direkt boyarmaddelerin mutajenik etkisinin umu-testi ile araştırılması. KSÜ Doğa Bilimleri Dergisi, 15(1), 13–19.

    Google Scholar 

  • Setthayanond, J., et al. (2023). Low-level cationisation of cotton opens a chemical saving route to salt free reactive dyeing. Cellulose, 30, 4697.

    Article  CAS  Google Scholar 

  • Shahinur, S., Sayeed, M. A., Hasan, M., Sayem, A. S. M., Haider, J., & Ura, S. (2022). Current development and future perspective on natural jute fibers and their biocomposites. Polymers, 14(7), 1445.

    Article  CAS  Google Scholar 

  • Simion Beldean-Galea, M., Copaciu, F. M., & Coman, M. V. (2018). Chromatographic analysis of textile dyes. Journal of AOAC International, 101(5), 1353–1370.

    Article  Google Scholar 

  • Singh, H., Singh, J. I. P., Singh, S., Dhawan, V., & Tiwari, S. K. (2018). A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), 28427–28437.

    CAS  Google Scholar 

  • Singha, K., Maity, S., & Singha, M. (2012). The salt-free dyeing on cotton: An approach to effluent free mechanism; Can chitosan be a potential option. International Journal of Textile Science, 1(6), 69–77.

    Article  Google Scholar 

  • Slama, H. B., Chenari Bouket, A., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., et al. (2021). Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences, 11(14), 6255.

    Article  CAS  Google Scholar 

  • Srikulkit, K., & Santifuengkul, P. (2000). Salt-free dyeing of cotton cellulose with a model cationic reactive dye. Coloration Technology, 116(12), 398–402.

    Article  CAS  Google Scholar 

  • Tang, P., et al. (2021). Modification of cotton fabrics with 2-diethylaminoethyl chloride for salt-free dyeing with anionic dyes. Cellulose, 28(10), 6699–6712.

    Article  CAS  Google Scholar 

  • Tao, K., et al. (2021). Salt-free dyeing of cotton fabric using 3-chloro-2-hydroxypropyltrimethyl ammonium chloride by pad-irradiate-pad-steam process, and prediction of its K/S value by LS-SVM. Journal of Natural Fibers, 18(5), 674–684.

    Article  CAS  Google Scholar 

  • Tejado, A., Alam, M. N., Antal, M., Yang, H., & van de Ven, T. G. (2012). Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose, 19, 831–842.

    Article  CAS  Google Scholar 

  • Thamaraiselvan, C., Michael, N., & Oren, Y. (2018). Selective separation of dyes and brine recovery from textile wastewater by nanofiltration membranes. Chemical Engineering & Technology, 41(2), 185–293.

    Article  CAS  Google Scholar 

  • Topič, T., Gorjanc, M., & Kert, M. (2018). The influence of the treatment process on the dyeability of cotton fabric using goldenrod dye. Tekstilec, 61(3), 192–200.

    Article  Google Scholar 

  • Venkatarajan, S., & Athijayamani, A. (2021). An overview on natural cellulose fiber reinforced polymer composites. Materials Today: Proceedings, 37, 3620–3624.

    CAS  Google Scholar 

  • Wang, W. M., Cai, Z. S., Yu, J. Y., & Xia, Z. P. (2009a). Changes in composition, structure, and properties of jute fibers after chemical treatments. Fibers and Polymers, 10, 776–780.

    Article  CAS  Google Scholar 

  • Wang, L., et al. (2009b). Preparation of cationic cotton with two-bath pad-bake process and its application in salt-free dyeing. Carbohydrate Polymers, 78(3), 602–660.

    Article  CAS  Google Scholar 

  • Wang, H., Memon, H., Hassan, E. A. M., Miah, M. S., & Ali, M. A. (2019). Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials (Basel), 12(8), 1226.

    Article  CAS  Google Scholar 

  • Wang, H., Farooq, A., & Memon, H. (2020). Influence of cotton fiber properties on the microstructural characteristics of mercerized fibers by regression analysis. Wood and Fiber Science, 52(1), 13–27.

    Article  Google Scholar 

  • Wang, L., et al. (2022a). A single-step pad-steam cationisation and dyeing process for improving dyeing properties of cotton fabrics. Coloration Technology, 135(5), 509–521.

    Article  Google Scholar 

  • Wang, W.-Y., et al. (2022b). A salt-free, zero-discharge and dyebath-recyclable circular coloration technology based on cationic polyelectrolyte complex for cotton fabric dyeing. Cellulose, 29(2), 1249–1262.

    Article  CAS  Google Scholar 

  • Wangatia, L. M., & Tseghai, G. B. (2015). Cationization of cotton using cattle hoof and horn for salt-free reactive dyeing. The Journal of The Textile Institute, 107, 1–6.

    Google Scholar 

  • Wilkins, T. A., & Arpat, A. B. (2005). The cotton fiber transcriptome. Physiologia Plantarum, 124(3), 295–300.

    Article  CAS  Google Scholar 

  • Wu, Y., et al. (2023). Chemical modification of cotton fabrics with polyhexamethylene guanidine for salt-free dyeing with reactive dyes. Journal of Natural Fibers, 20(1), 2156963.

    Article  Google Scholar 

  • Xia, J., et al. (2022). Efficient cationization of cotton fabric via oxidative pretreatment for salt-free reactive dyeing with low chemical consumption. Green Chemistry, 24, 9180–9190.

    Article  CAS  Google Scholar 

  • Xiao, H., Zhao, T., Li, C. H., & Li, M. Y. (2017). Eco-friendly approaches for dyeing multiple type of fabrics with cationic reactive dyes. Journal of Cleaner Production, 165, 1499–1507.

    Article  CAS  Google Scholar 

  • Yaneva, Z., Ivanova, D., Nikolova, N., & Toneva, M. (2022). Organic dyes in contemporary medicinal chemistry and biomedicine. I. From the chromophore to the bioimaging/bioassay agent. Biotechnology & Biotechnological Equipment, 36(1), 1–14.

    Article  CAS  Google Scholar 

  • Yanti, F. F., Andevita, N. R., & Puspasari, I. (2021). Effect of chitosan pre-treatment on color fastness of cotton fabric with natural dyes from mango leaves extract. Teknoin, 27(1), 9–16.

    Article  Google Scholar 

  • Ye, W., Ye, K., Lin, F., Liu, H., Jiang, M., Wang, J., et al. (2020). Enhanced fractionation of dye/salt mixtures by tight ultrafiltration membranes via fast bio-inspired co-deposition for sustainable textile wastewater management. Chemical Engineering Journal, 379, 122321.

    Article  CAS  Google Scholar 

  • Yıldırım, S., & Çalışkan, U. K. (2020). Kenevir ve sağlık alanında kullanımı. Ankara Universitesi Eczacilik Fakultesi Dergisi, 44, 112–136.

    Google Scholar 

  • Yu, C., et al. (2019a). Facile salt-free process for cotton fabric dyeing: Pad-irradiate-pad-steam process using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride. Environmental Progress & Sustainable Energy, 38(6), e13252.

    Article  CAS  Google Scholar 

  • Yu, C., et al. (2019b). Optimization of the cationizing condition in salt-free reactive dyeing of cotton fabric with the pad-irradiate-pad-steam process using response surface methodology. Environmental Progress & Sustainable Energy, 39(3), e13341.

    Article  Google Scholar 

  • Yuan, J. M., Feng, Y. R., & He, L. P. (2016). Effect of thermal treatment on properties of ramie fibers. Polymer Degradation and Stability, 133, 303–311.

    Article  CAS  Google Scholar 

  • Yurtsever, A., Deniz, U. Ç. A. R., & Şahinkaya, E. (2020). Tekstil Endüstrisi Atıksularının Sonlu Filtrasyon Sistemi ile Nanofiltrasyon ve Ters Ozmoz Membranları Kullanılarak Filtrasyonu. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), 875–891.

    Article  Google Scholar 

  • Zhai, S., et al. (2022). Cationic cotton modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride for salt-free dyeing with high levelling performance. Cellulose, 29(1), 633–646.

    Article  CAS  Google Scholar 

  • Zhang, M., et al. (2007a). Synthesis of cationic hydrolyzed starch with high DS by dry process and use in salt-free dyeing. Carbohydrate Polymers, 69(1), 123–129.

    Article  CAS  Google Scholar 

  • Zhang, F., et al. (2007b). Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary. Coloration Technology, 123(6), 351–357.

    Article  CAS  Google Scholar 

  • Zhang, F., et al. (2008). HBP-NH2 grafted cotton fiber: Preparation and salt-free dyeing properties. Carbohydrate Polymers, 74(2), 250–256.

    Article  CAS  Google Scholar 

  • Zhang, Z., et al. (2021). Cotton fabrics modified with Si@ hyperbranched poly(amidoamine): Their salt-free dyeing properties and thermal behaviors. Cellulose, 28(1), 565–579.

    Article  CAS  Google Scholar 

  • Zhao, H., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235–241.

    Article  CAS  Google Scholar 

  • Zhou, J., Li, Z., & Yu, C. (2017). Property of ramie fiber degummed with Fenton reagent. Fibers and Polymers, 18, 1891–1897.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminoddin Haji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eren, S., Eren, H.A., Ozturk, M., Haji, A. (2024). Salt-Free Dyeing of Cellulosic Fibers. In: Muthu, S.S. (eds) Sustainable Manufacturing Practices in the Textiles and Fashion Sector. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-51362-6_2

Download citation

Publish with us

Policies and ethics