Skip to main content

Echinodesign: A New Model for Facilitating the Dissemination and Effectiveness of the Biomimetic Design Culture

  • Chapter
  • First Online:
Biomimetics, Biodesign and Bionics

Abstract

The chapter presents a novel approach to carry out biomimetic research and disseminate the culture of bio-inspired designs. It describes the results of an interdisciplinary project, named Echinodesign, i.e. a design-driven biological investigation aimed at understanding the characteristics, principles, and logic of echinoids as well as at facilitating the development of innovative inspired products and services. In particular, the echinoids are marine invertebrate organisms, commonly known as sea urchins, which have a long history as inspiring models for transferring bio-inspired solutions. Through a hybrid approach between biology, design, and engineering, these organisms with their unique functional features were re-interpreted and applied in different design fields, including furniture, biomedical, lighting, and sports. The resulting inspired design products were finally shown in a dedicated exhibition, proposed as a tool to disseminate and amplify the results of the biomimetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.riccicliamo.it/en/the-second-life-of-sea-urchins/

References

  1. Lefebvre, B., et al. (2013). Palaeobiogeography of Ordovician echinoderms. Geological Society, London, Memoirs, 38, 173–198.

    Article  Google Scholar 

  2. Boivin, S., Saucède, T., Laffont, R., Steimetz, E., & Neige, P. (2018). Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna. PLoS One, 13.

    Google Scholar 

  3. Nebelsick, J. H., Dynowski, J. F., Grossmann, J. N., & Tötzke, C. (2015). Echinoderms: Hierarchically organized light weight skeletons. In C. Hamm (Ed.), Evolution of lightweight structures: Analyses and technical applications (pp. 141–156). Springer.

    Chapter  Google Scholar 

  4. Perricone, V., Grun, T. B., Marmo, F., Langella, C., & Carnevali, M. D. C. (2020). Constructional design of echinoid endoskeleton: Main structural components and their potential for biomimetic applications. Bioinspiration & Biomimetics, 16(1), 011001.

    Article  Google Scholar 

  5. Benyus, J. M. (1997). Biomimicry: Innovation inspired by nature. Quill-William Morrow.

    Google Scholar 

  6. Speck, O., Speck, D., Horn, R., Gantner, J., & Sedlbauer, K. P. (2017). Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspiration & Biomimetics, 12.

    Google Scholar 

  7. Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N., & Aoussat, A. (2017). Biomimetics: Process, tools and practice. Bioinspiration & Biomimetics, 12(1), 011002.

    Article  CAS  Google Scholar 

  8. Seilacher, A., & Gishlick, A. D. (2014). Morphodynamics. CRC Press.

    Book  Google Scholar 

  9. Gould, S. J. (2010). The panda's thumb: More reflections in natural history. W.W. Norton.

    Google Scholar 

  10. Perricone, V., Santulli, C., Rendina, F., & Langella, C. (2021). Organismal design and biomimetics: A problem of scale. Biomimetics, 6(4), 56.

    Article  Google Scholar 

  11. Helms, M. E., Vattam, S. S., Goel, A. K., Yen, J., & Weissburg, M. (2008). Problem-driven and solution-based design: Twin processes of biologically inspired design.

    Google Scholar 

  12. Badarnah, L., & Kadri, U. (2015). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120–133.

    Article  Google Scholar 

  13. Langella, C. (2007). Hybrid design. Progettare tra tecnologia e natura. FrancoAngeli.

    Google Scholar 

  14. Reich, M., Smith, A. B. (2009). Origins and biomechanical evolution of teeth in echinoids and their relatives. Palaeontology, 52, 1149–1168.

    Google Scholar 

  15. Hendricks, J. R., Stigall, A. L., & Lieberman, B. S. (2015). The Digital Atlas of Ancient Life: Delivering Information on Paleontology and Biogeography. Palaeontologia Electronica, 1.

    Google Scholar 

  16. Allasinaz, A. (1995). Paleontologia generale e sistematica degli invertebrati. ECIG.

    Google Scholar 

  17. Ebert, T. A. (1996). Adaptive aspects of phenotypic plasticity in echinoderms. Oceanologica Acta, 19(3–4), 347–355.

    Google Scholar 

  18. Fernandez, C., & Boudouresque, C. F. (1997). Phenotypic plasticity of Paracentrotus lividus (Echinodermata: Echinoidea) in a lagoonal environment. Marine Ecology Progress Series, 152, 145–154.

    Article  Google Scholar 

  19. Telford, M. (1985). Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata). Zoomorphology, 105, 114–124.

    Article  Google Scholar 

  20. Ellers, O., & Telford, M. (1992). Causes and consequences of fluctuating coelomic pressure in sea urchins. The Biological Bulletin, 182(3), 424–434.

    Article  CAS  Google Scholar 

  21. Philippi, U., & Nachtigall, W. (1996). Functional morphology of regular echinoid tests (Echinodermata, Echinoida): A finite element study. Zoomorphology, 116, 35–50.

    Article  Google Scholar 

  22. Ellers, O., Johnson, A. S., & Moberg, P. E. (1998). Structural strengthening of urchin skeletons by collagenous sutural ligaments. The Biological Bulletin, 195(2), 136–144.

    Article  CAS  Google Scholar 

  23. Vogel, S. (2013). Comparative biomechanics: Life’s physical world. Princeton University Press.

    Google Scholar 

  24. Smith, A. B. (1980). The structure and arrangement of echinoid tubercles. Philosophical Transactions of the Royal Society B: Biological Sciences, 289, 1–54.

    Google Scholar 

  25. Oldfield, S. C. (1976). Surface ornamentation of the echinoid test and its ecologic significance. Paleobiology, 2, 122–130.

    Article  Google Scholar 

  26. Wester, T. (1984). Structural order in space: The plate-lattice dualism. Plate Laboratory, Royal Academy of Arts, School of Architecture.

    Google Scholar 

  27. Wester, T. (2002). Nature teaching structures. International Journal of Space Structures, 17, 135–147.

    Article  Google Scholar 

  28. Mancosu, A., & Nebelsick, J. H. (2020). Tracking biases in the regular echinoid fossil record: The case of Paracentrotus lividus in recent and fossil shallow-water, high-energy environments. Palaeontologia Electronica, 23(2).

    Google Scholar 

  29. Marmo, F., Perricone, V., Cutolo, A., Daniela Candia Carnevali, M., Langella, C., & Rosati, L. (2022). Flexible sutures reduce bending moments in shells: From the echinoid test to tessellated shell structures. Royal Society Open Science, 9(5), 211972.

    Article  Google Scholar 

  30. Grun, T. B., & Nebelsick, J. H. (2018). Structural design of the minute clypeasteroid echinoid Echinocyamus pusillus. Royal Society Open Science, 5(5), 171323.

    Article  Google Scholar 

  31. Perricone, V., Grun, T. B., Rendina, F., Marmo, F., Candia Carnevali, M. D., Kowalewski, M., et al. (2022). Hexagonal Voronoi pattern detected in the microstructural design of the echinoid skeleton. Journal of the Royal Society Interface, 19(193), 20220226.

    Article  Google Scholar 

  32. Smith, A. B. (1980). Stereom microstructure of the echinoid test.

    Google Scholar 

  33. Candia Carnevali, M. D., Bonasoro, F., & Melone, G. (1991). Microstructure and mechanical design in the lantern ossicles of the regular sea-urchin Paracentrotus lividus. A scanning electron microscope study. The Italian Journal of Zoology, 58, 1–42.

    Google Scholar 

  34. Andrietti, F., Candia Carnevali, D. M., Wilkie, I. C., Lanzavecchia, G., Melone, G., & Celentano, F. C. (1990). Mechanical analysis of the sea-urchin lantern: The overall system in Paracentrotus lividus. Journal of Zoology, 220, 345–366.

    Article  Google Scholar 

  35. Stock, S. R., Ignatiev, K. I., Veis, A., De Carlo, F., & Almer, J. D. (2004, October). Micro-CT of sea urchin ossicles supplemented with microbeam diffraction. In Developments in X-ray tomography IV (Vol. 5535, pp. 11–20). SPIE.

    Chapter  Google Scholar 

  36. Markel, K., Gorny, P., & Abraham, K. (1977). Microarchitecture of sea urchin teeth. Fortschritte der Zoologie, 24, 103–114.

    Google Scholar 

  37. Espinosa, H. D., Zaheri, A., Nguyen, H., Restrepo, D., Daly, M., Frank, M., McKittrick, J. (2019). In situ Wear Study Reveals Role of Microstructure on Self-Sharpening Mechanism in Sea Urchin Teeth. Matter, 1, 1246–1261.

    Google Scholar 

  38. Ma, Y., Aichmayer, B., Paris, O., Fratzl, P., Meibom, A., Metzler, R. A., et al. (2009). The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proceedings of the National Academy of Sciences, 106(15), 6048–6053.

    Article  CAS  Google Scholar 

  39. Smith, D. S., Wainwright, S. A., Baker, J., & Cayer, M. L. (1981). Structural features associated with movement and ‘catch’of sea-urchin spines. Tissue and Cell, 13(2), 299–320.

    Article  CAS  Google Scholar 

  40. Wainwright, S. A., Biggs, W. D., Currey, J. D., & Gosline, J. M. (1976). Mechanical design in organism. Edward Arnold Publishers.

    Google Scholar 

  41. Tsafnat, N., Fitz Gerald, J. D., Le, H. N., & Stachurski, Z. H. (2012). Micromechanics of sea urchin spines. PLoS One, 7.

    Google Scholar 

  42. Presser, V., Schultheiß, S., Berthold, C., & Nickel, K. G. (2009). Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. Journal of Bionic Engineering, 6(3), 203–213.

    Article  Google Scholar 

  43. Grossmann, J. N., & Nebelsick, J. H. (2013). Stereom differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins. In C. Johnson (Ed.), Echinoderms in a changing world (pp. 97–104). Taylor & Francis.

    Google Scholar 

  44. Stock, S. R., Ebert, T. A., Ignatiev, K., & De Carlo, F. (2006). Structures, structural hierarchy, and function in sea urchin spines. In Developments in X-Ray tomography (Vol. 6318, p. 63180A). International Society for Optics and Photonics.

    Chapter  Google Scholar 

  45. Toader, N., Sobek, W., & Nickel, K. G. (2017). Energy absorption in functionally graded concrete bioinspired by sea urchin spines. Journal of Bionic Engineering, 14, 369–378.

    Article  Google Scholar 

  46. Seto, J., Ma, Y., Davis, S. A., Meldrum, F., Gourrier, A., Kim, Y. Y., et al. (2012). Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proceedings of the National Academy of Sciences, 109(10), 3699–3704.

    Article  CAS  Google Scholar 

  47. Coppard, S. E., Kroh, A., & Smith, A. B. (2012). The evolution of pedicellariae in echinoids: An arms race against pests and parasites. Acta Zoologica, 93, 125–148.

    Article  Google Scholar 

  48. Cavey, M. J., & Märkel, K. (1994). Echinodermata. In F. W. Harrison (Ed.), Microscopic anatomy of invertebrates (pp. 345–400). Wiley.

    Google Scholar 

  49. Campbell, A. C. (1973). Observations on the activity of echinoid pedicellariae: I. Stem responses and their significance. Marine Behaviour and Physiology, 2, 33–61.

    Article  Google Scholar 

  50. Santos, R., & Flammang, P. (2006). Morphology and tenacity of the tube foot disc of three common European sea urchins species: A comparative study. Biofouling, 22, 187–200.

    Article  Google Scholar 

  51. Smith, A. B. (1979). Peristomial tube feet and plates of regular echinoids. Zoomorphologie, 94, 67–80.

    Article  Google Scholar 

  52. Jensen, M. (1985). Functional morphology of test, lantern, and tube feet ampullae system in flexible and rigid sea urchins (Echinoidea). In Proceedings of the International Echinoderms Conferences, Galway, Eire, 1984 (pp. 281–288). A. A. Balkema.

    Google Scholar 

  53. Perricone, V., Grun, T., Raia, P., & Langella, C. (2022). Paleomimetics: A conceptual framework for a biomimetic design inspired by fossils and evolutionary processes. Biomimetics, 7(3), 89.

    Article  Google Scholar 

  54. Prince, J. D. (2014). 3D printing: An industrial revolution. Journal of Electronic Resources in Medical Libraries, 11(1), 39–45. https://doi.org/10.1080/15424065.2014.877247

    Article  Google Scholar 

  55. The Economist. (2012). The third industrial revolution. https://www.economist.com/leaders/2012/04/21/the-third-industrial-revolution. Accessed 18 Mar 2022.

  56. Sondhi, P., & Stine, K. J. (2021). Methods to generate structurally hierarchical architectures in nanoporous coinage metals. Coatings, 11(12), 1440.

    Article  CAS  Google Scholar 

  57. Koerner, J. (2017). Digitally crafted couture (pp. 40–47). Wiley.

    Google Scholar 

  58. Atzeni, E., & Salmi, A. (2012). Economics of additive manufacturing for end-usable metal parts. The International Journal of Advanced Manufacturing Technology, 62(9), 1147–1155.

    Article  Google Scholar 

  59. Lélis, E. C., Paulino, M. C., dos Santos Jesus, M. B., & Bueno, M. J. C. (2020). Um estudo de acessibilidade em uma instituição de ensino de São Paulo. South American Development Society Journal, 6(17), 408.

    Article  Google Scholar 

  60. Van Nes, I. (2012). How to create a living brand. In D. Raposo (Ed.), Design, visual communication and branding (pp. 72–81). IS Publishers.

    Google Scholar 

  61. Wheeler, A. (2017). Designing brand identity: An essential guide for the whole branding team. Wiley.

    Google Scholar 

  62. Kapferer, J. N. (2012). The new strategic brand management: Advanced insights and strategic thinking. Kogan Page Publishers.

    Google Scholar 

  63. Keller, K. L., Parameswaran, M. G., & Jacob, I. (2011). Strategic brand management: Building, measuring, and managing brand equity. Pearson Education India.

    Google Scholar 

  64. Bartholmé, R. H., & Melewar, T. C. (2011). Remodelling the corporate visual identity construct: A reference to the sensory and auditory dimension. Corporate Communications: An International Journal, 16(1), 53–64.

    Article  Google Scholar 

  65. Machado, J. C., de Carvalho, L. V., Torres, A., & Costa, P. (2015). Brand logo design: Examining consumer response to naturalness. Journal of Product & Brand Management, 24(1).

    Google Scholar 

  66. MacInnis, D. J., Shapiro, S., & Mani, G. (1999). Enhancing brand awareness through brand symbols. ACR North American Advances.

    Google Scholar 

  67. Zoppè, M. (2014). Comunicare l’invisibile. La rappresentazione visiva di concetti biofisici. Progetto Grafico, 25, 50–55.

    Google Scholar 

  68. Jackson, R. B., Bejarano, A., Winkle, K., & Williams, T. (2021). Design, performance, and perception of robot identity. In Workshop on robo-identity: Artificial identity and multi-embodiment at HRI (Vol. 2021).

    Google Scholar 

Download references

Acknowledgements

Although the approach and contents of the essay are shared by the authors, it should be noted that V. Perricone wrote and edited the introduction, paragraphs 2, 3, and 4 and conclusion; the introduction, paragraphs 2.1, 3, and 4 and conclusion are edited by C. Langella; G. Pontillo edited paragraph 5; and R. Angari edited paragraph 6 and provided graphics and pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Perricone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perricone, V., Langella, C., Pontillo, G., Angari, R. (2024). Echinodesign: A New Model for Facilitating the Dissemination and Effectiveness of the Biomimetic Design Culture. In: Arruda, A.J.V., Palombini, F.L. (eds) Biomimetics, Biodesign and Bionics. Environmental Footprints and Eco-design of Products and Processes. Springer, Cham. https://doi.org/10.1007/978-3-031-51311-4_4

Download citation

Publish with us

Policies and ethics