Skip to main content

Echinoderms: Hierarchically Organized Light Weight Skeletons

  • Chapter
  • First Online:
Evolution of Lightweight Structures

Part of the book series: Biologically-Inspired Systems ((BISY,volume 6))

Abstract

Echinoderm skeletons are described within a hierarchical framework ranging from complete organisms to the ultrastructural level. They consist of numerous elements which can be isolated, connected by soft tissue or locked together in rigid structures. The top level considers skeletons as a whole with all associated elements and the basic symmetry of the echinoderms. The next level deals with the structural analysis and modeling of echinoids with respect to the growth parameters and stress resistance of the corona. The flexibility and movement has also been studied for the stalks and arms of recent and fossil crinoids. The next level deals with the elaborate morphology and types of symmetry found in single skeletal elements. The numerous types of stereom architectures found within the elements of all echinoderms are highly correlated to specific functions. A high number of recent studies concern the last hierarchical level on ultrastructure and biomineralization. Lightweight aspects of the skeleton are especially present at the level of conjoined plates, single elements and the stereom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albeck S, Addadi I, Weiner S (1996) Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins. Connect Tissue Res 35:365–370

    Article  Google Scholar 

  • Ameye L, Compere Ph, Dille J, Dubois Ph (1998) Ultrastructure of the early calcification site and of its mineralizing organic matrix in Paracentrotus lividus (Echinodermata: Echinoidea). Histochem Cell Biol 110:285–294

    Article  Google Scholar 

  • Ameye L, Hermann R, Dubois P (2000) Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution. J Struct Biol 131:116–125

    Article  Google Scholar 

  • Baumiller TK (2008) Crinoid ecological morphology. Annu Rev Earth Planet Sci 36:221–249

    Article  Google Scholar 

  • Baumiller TK, Ausich WI (1996) Crinoid stalk flexibility: theoretical predictions and fossil stalk postures. Lethaia 29:47–59

    Article  Google Scholar 

  • Baumiller TK, LaBarbera M (1993) Mechanical properties of the stalk and cirri of the sea lily Cenocrinus asterius. Comp Biochem Physiol 106A:91–95

    Article  Google Scholar 

  • Baumiller TK, Messing CG (2007) Stalked crinoid locomotion, and its ecological and evolutionary implications. Palaeont Electr 10(2A):10p

    Google Scholar 

  • Berman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins. Nature 331:546–548

    Article  Google Scholar 

  • Birenheide R, Motokawa T (1994) Morphological basis and mechanics of arm movement in the stalked crinoid Metacrinus rotundus (Echinodermata, Crinoidea). Mar Biol 121:273–283

    Article  Google Scholar 

  • Birenheide R, Motokawa T (1996) Contractile connective tissue in crinoids. Biol Bull 191:1–4

    Article  Google Scholar 

  • Birenheide R, Motokawa T (1997) Morphology of Skeletal Cortex in the Arms of Crinoids (Echinodermata: Crinoidea). Zool Sci 14:753–761

    Article  Google Scholar 

  • Blake DF, Peacor DR, Allard LF (1984) Ultrastructural and microanalytical results from echinoderm calcite: implications for biomineralization and diagenesis of skeletal material. Micron Microscopica Acta 15:85–90

    Article  Google Scholar 

  • Burkhardt A, Hansmann W, Märkel K, Niemann HJ (1983) Mechanical design in spines of diadematoid echinoids (Echinodermata, Echinoidea). Zoomorphology 102:189–203

    Article  Google Scholar 

  • Chakra MA, Stone JR (2011) Classifying echinoid skeleton models: testing ideas about growth and form. Paleobiology 37:686–695

    Article  Google Scholar 

  • Coppard SE, Campbell AC (2004) Taxonomic significance of spine morphology in the echinoid genera Diadema and Echinothrix. Invertebr Biol 123:357–371

    Article  Google Scholar 

  • Cowen R (1981) Crinoids arms and banana plantations: an economic harvesting analogy. Paleobiology 7:332–343

    Google Scholar 

  • Currey JD (1975) A comparson of the strength of echinoderm spines and mollusc shells. J Mar Biol Ass UK 55:419–424

    Article  Google Scholar 

  • Dafni J (1986) Echinoid Skeletons as Pneu Structures. Konzepte SFB 230, Universität Tübingen und Stuttgart. Stuttgart 13:9–96

    Google Scholar 

  • Dafni J (1988) A biomechanical approach to the ontogeny and phylogeny of echinoids. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Oxford University Press, Oxford, pp 175–188

    Google Scholar 

  • David B, Stock SR, De Carlo F, Hétérier V, De Ridder C (2009) Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments. Mar Biol 156:1559–1572

    Article  Google Scholar 

  • Dynowski JF (2012) Echinoderm remains in shallow-water carbonates at Fernandez Bay, San Salvador Island, Bahamas. Palaios 27:183–191

    Article  Google Scholar 

  • Dynowski JF, Nebelsick JH (2011) Ecophenotypic variations of Encrinus liliiformis (Echinodermata: Crinoidea) from the middle Triassic Muschelkalk of Southwest Germany. Swiss J Palaeont 130:53–67

    Article  Google Scholar 

  • Ebert TA (1975) Growth and morallity of post-larval echinoids. Am Zool 15:755–775

    Article  Google Scholar 

  • Ebert TA (1985) The non-periodic nature of growth rings in echinoid spines. In: Keegan BF, O’Connor BDS (eds) Echinodermata: proceedings of the International Echinoderm Conference, Galway, A.A. Balkema, Rotterdam, pp 261–267, 24–29 Sept 1984

    Google Scholar 

  • Ebert TA (1986) A new theory to explain the origin of growth lines in sea urchin spines. Mar Ecol Prog Ser 34:197–199

    Article  Google Scholar 

  • Ellers O, Telford M (1992) Causes and consequences of fluctuating coelomic pressure in sea urchins. Biol Bull 182:424–434

    Article  Google Scholar 

  • Ellers O, Johnson AS, Moberg PF (1998) Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biol Bull 195:136–144

    Article  Google Scholar 

  • Emlet R (1982) Echinoderm calcite: a mechanical analysis from larval spicules. Biol Bull 163:264–275

    Article  Google Scholar 

  • Gilbert PUPA, Weiner S (2009) The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc Natl Acad Sci USA 106:6048–6053

    Article  Google Scholar 

  • Gilbert PUPA, Wilt FH (2011) Molecular aspects of biomineralization of the echinoderm endoskeleton. Prog Mol Subcell Biol 52:199–223

    Article  Google Scholar 

  • Grossmann JN, Nebelsick JH (2013a) Stereom Differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins. In: Johnson C (ed) Echinoderms in a changing World. Proceedings of the 13th International Echinoderm Conference, Tasmania, CRC Press, London, pp 97–104

    Google Scholar 

  • Grossmann JN, Nebelsick JH (2013b) Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorph 132:301–315

    Google Scholar 

  • Hidaka M, Takahashi K (1983) Fine structure and mechanical properties of the catch apparatus of the sea-urchin spine, a collagenous connective tissue with muscle-like holding capacity. J Exp Biol 103:1–14

    Google Scholar 

  • Hotchkiss, FHC (1998) A “rays-as-appendages” model of the origin of pentamerism in echinoderms. Paleobiology 24(2):200–214.

    Google Scholar 

  • Johnson AS, Ellers O, Lemire J, Minor M, Leddy HA (2002) Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. Proc R Soc Lond B 269:215–220

    Article  Google Scholar 

  • Killian CE, Wilt FH (2008) Molecular aspects of biomineralization of the echinoderm endoskeleton: Chem Rev 108:4463–4474

    Article  Google Scholar 

  • Killian CE, Metzler RA, Gong YT, Churchill TH, Olson IC, Trubetskoy V, Christensen MB, Fournelle JH, De Carlo F, Cohen S, Mahamid J, Scholl A, Young A, Doran A, Wilt FH, Coppersmith SN, Gilbert PUPA (2011) Self-Sharpening Mechanism of the Sea Urchin Tooth. Adv Funct Mater 21:682–690

    Article  Google Scholar 

  • Kniprath E (1974) Ultrastructure and growth of the sea urchin tooth. Calc Tiss Res 14:211–228

    Article  Google Scholar 

  • Kroh A, Nebelsick JH (2010) Echinoderms and Oligo-Miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228

    Google Scholar 

  • Kroh A, Smith AB (2010) The phylogeny and classification of post-Palaeozoic echinoids. J Syst Palaeont 8(2):147–212

    Article  Google Scholar 

  • Laurin B, David B (1990) Mapping morphological changes in the spatagoid Echinocardium: applications to ontogeny and interspcific comparisons. In: De Ridder C, Dubois P, Lahaye MC, Jangoux M (eds) Echinoderm research. Rotterdam, Balkema, pp 739–745

    Google Scholar 

  • Laurin B, Marchand D, Thierry J (1979) Variations morphologiques du test chez Echinocardium cordatum (Pennant): étude qualitative et quantitative de cinq échantillons de Bretagne et de Normandie. Bull Soc Geol Normandie 65:895–906

    Google Scholar 

  • Lawrence JM, Pomory CM, Sonnenholzner J, Chao C-M (1998) Bilateral symmetry of the petals in Melitta tenuis, Encope micropora, and Arachnoides placenta (Echinodermata: Clypeasteroida). Invertebr Biol 17:94–100

    Article  Google Scholar 

  • MacKenzie CR, Wilbanks SM, Barker MF, McGrath KM (2001) Biomineralisation in echinoderms: identification of occluded proteins. In: Barker M (ed) Echinoderms 2000. Swets & Zeitlinger, Lisse, pp 499–504

    Google Scholar 

  • Mann K, Poustka AJ, Mann M (2010a) Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin. Proteome Sci 8:6

    Article  Google Scholar 

  • Mann K, Wilt FH, Proustka A (2010b) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8:33

    Article  Google Scholar 

  • Märkel K, Gorny P (1973) Zur funktionellen Anatomie der Seeigelzähne (Echinodermata, Echinoidea). Zoomorph 75:223–242

    Google Scholar 

  • Märkel K, Röser U (1983) Calcite-resorption in the spine of the echinoid Eucidaris tribuloides. Zoomorph 103:43–58

    Article  Google Scholar 

  • Märkel K, Kubanek F, Willgallis A (1971) Polykristalliner Calcit bei Seeigeln (Echinodermata, Echinoidea). Cell Tissue Res 119:355–377

    Google Scholar 

  • Märkel K, Röser U, Mackenstedt U, Klostermann M (1986) Ultrastructure investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorph 106:232–243

    Article  Google Scholar 

  • Matranga V, Bonaventura R, Costa C, Karakostis K, Pinsino A, Russo R, Zito F (2011) Echinoderms as blueprints for biocalcification: Regulation of skeletogenic genes and matrices. Mol Biomin 52:225–248

    Article  Google Scholar 

  • Mihaljević M, Jerjen I, Smith AB (2011) The test architecture of Clypeaster (Echinoidea, Clypeasteroida) and its phylogenetic significance. ZooTaxa 2983:21–38

    Google Scholar 

  • Morris, VB (2007) Origins of radial symmetry identified in an echinoderm during adult development and the inferred axes of ancestral bilateral symmetry. Proc R Soc B 294:1511–1516

    Article  Google Scholar 

  • Moss ML, Meehan MM (1968) Growth of the echinoid test. Acta Anat 69:409–444

    Article  Google Scholar 

  • Motokawa T, Osamu S, Birenheide R (2004) Contraction and stiffness changes in collagenous arm ligaments of the stalked crinoid Metacrinus rotundus (Echinodermata). Biol Bull 206:4–12

    Article  Google Scholar 

  • Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, Dubois P (2010) Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 170:41–49

    Article  Google Scholar 

  • Nebelsick JH (1992) Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea. Palaios 7:316–328

    Article  Google Scholar 

  • Pearse JS, Pearse VB (1975) Growth zones in echinoids skeleton. Am Zool 15:731–753

    Article  Google Scholar 

  • Peled-Kamar M, Hamilton P, Wilt FH (2002) Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Exp Cell Res 272:56–61

    Article  Google Scholar 

  • Phillipi U, Nachtigall W (1996) Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorph 116:35–50

    Article  Google Scholar 

  • Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase. Science 306:1161–1164

    Article  Google Scholar 

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PU (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci USA 105:17362–17366

    Article  Google Scholar 

  • Presser V, Kohler C, Zivcová Z, Berthold C, Nickel KG, Schultheiß S, Gregorová E, Pabst W (2009) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part II. Mechanical behavior of sea urchin spine inspired porous aluminum oxide ceramics under compression. J Bionic Engin 6:357–364

    Article  Google Scholar 

  • Raup DM (1966) The endoskeleton. In: Boolotian RA (ed) Physiology of Echinodermata. Wiley, New York, pp 379–395

    Google Scholar 

  • Raup DM (1968) Theoretical morphology of echinoid growth. J. Paleont 42:50–63

    Google Scholar 

  • Robach JS, Stock SR, Veis A (2009) Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus. J Struct Biol 168:452–466

    Article  Google Scholar 

  • Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5:191–221

    Google Scholar 

  • Smith AB (1978) A functional classification of the coronal pores of regular echinoids. Palaeontology 21:759–789

    Google Scholar 

  • Smith AB (1980a) The structure, function and evolution of tube feet and ambulacral pores in irregular echinoids. Palaeontology 23:39–84

    Google Scholar 

  • Smith AB (1980b) The structure and arrangement of echinoid tubercles. Phil Trans Roy Soc Lond B 289:1–54

    Article  Google Scholar 

  • Smith AB (1980c) Stereom microstructure of the echinoid test. Spec Pap Palaeont 25:1–83

    Google Scholar 

  • Smith AB (1990) Biomineralization in Echinoderms. In: Carter JG (ed) Skeletal biomineralization: Patterns, process and evolutionary trends vol I. Van Nostrand Rheinhold, New York, pp 413–443

    Google Scholar 

  • Smith AB (1997) Echinoderm larvae and phylogeny. Annual Rev Ecol Syst 28:219–241

    Article  Google Scholar 

  • Smith AB (2005a) The pre-radial history of echinoderms. Geol J 40:255–280

    Article  Google Scholar 

  • Smith AB (2005b) Growth and form in echinoids: The evolutionary interplay of plate accretion and plate addition. In: Briggs DEG (ed) Evolving form and function: fossils and development: proceedings of a symposium honoring Adolf Seilacher for his contributions to paleontology in celebration of his 80th Birthday. New Haven. Peabody museum of Natural History, Yale University, pp 181–193

    Google Scholar 

  • Smith DS, del Castillo J, Morales M, Luke B (1990) The attachment of collagenous ligament to stereom in primary spines of the sea-urchin Eucidaris tribuloides. Tissue Cell 22:157–176

    Article  Google Scholar 

  • Smith AB, Peterson KJ, Wray G, Littlewood DTJ (2004) From bilateral symmetry to pentaradiality. The phylogeny of hemichordates and echinoderms. In: Cracraft J, Donoghue MJ (eds) Addembling the Tree of Life. Oxford University Press, New York, pp 365–383

    Google Scholar 

  • Stock SR, Nagaraja S, Barss J, Dahl T, Veis A (2003) X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus. J Struct Biol 141:9–21

    Article  Google Scholar 

  • Strathmann RR (1981) The role of spines in preventing structural damage to echinoid tests. Paleobiology 7:400–406

    Google Scholar 

  • Telford M (1985) Domes, arches und urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorph 105:114–124

    Article  Google Scholar 

  • Towe, KM (1967) Echinoderm calcite: Single crystal or polycrystalline aggregate. Science 157:1048–1050

    Article  Google Scholar 

  • Tsafnat N, Fitz Gerald JD, Le HN, Stachurski ZH (2012) Micromechanics of sea urchin spines. PLoS One 7(9):e44140. doi:10.1371/journal.pone.0044140

    Article  Google Scholar 

  • Tsipursky SJ, Buseck PR (1993) Structure of magnesian calcite from sea urchins. Am Min 78:775–781

    Google Scholar 

  • Veis A (2011) Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth. Front Biosci 17:2540–2560

    Article  Google Scholar 

  • Veis A, Stock SR, Alvares K, Lux E (2011) On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: Development of crystallinity and protein involvement. Cells Tissues Organs 194:131–137

    Article  Google Scholar 

  • Wang RZ, Addadi L, Weiner S (1997) Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Phil Trans R Soc Lond B Biol Sci 352(1352):469–480

    Article  Google Scholar 

  • Weber JN (1969) The incorporation of magnesium onto the skeletal calcite of echinoderms. Am J Sci 267:537–566

    Article  Google Scholar 

  • Wilt FH (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226

    Article  Google Scholar 

  • Wilt FH (2002) Biomineralization of the spicules of sea urchin embryos. Zool Sci 19:253–261

    Article  Google Scholar 

  • Wilt FH, Killian CE, Hamilton P, Croker L (2008) The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 314:1744–1752

    Article  Google Scholar 

  • Zachos LG (2009) A new computational growth model of sea urchin skeletons. J Theor Biol 259:646–657

    Article  Google Scholar 

  • Zamora S, Rahman I, Smith AB (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One 7(6):e38296

    Article  Google Scholar 

  • Ziegler A, Stock SR, Menze BH, Smith AB (2012) Macro- and microstructural diversity of sea urchin teeth revealed by large-scale micro-computed tomography survey. In Stock SR (ed) Developments in X-Ray tomography VIII. Proceedings of SPIE 8506, 85061G

    Google Scholar 

Download references

Acknowledgments

Funding provided by the Stiftung Baden-Württemberg, the DAAD and the German Science Foundation (DFG Project NE 537/24-1). Macroscopic photographs by Wolfgang Gerber, Tübingen. REM images of Figs. 8.5 and 8.6 by Susanne Leidenroth, SMNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Nebelsick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nebelsick, J., Dynowski, J., Grossmann, J., Tötzke, C. (2015). Echinoderms: Hierarchically Organized Light Weight Skeletons. In: Hamm, C. (eds) Evolution of Lightweight Structures. Biologically-Inspired Systems, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9398-8_8

Download citation

Publish with us

Policies and ethics