Skip to main content

Assessing the Robustness and Reproducibility of CT Radiomics Features in Non-small-cell Lung Carcinoma

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14366))

Included in the following conference series:

  • 246 Accesses

Abstract

The aim of this study was to investigate the robustness of radiomics features extracted from computed tomography (CT) images of patients affected by non-small-cell lung carcinoma (NSCLC). Specifically, the impact of manual segmentation on radiomics feature values and their variability were assessed. Therefore, 63 patients affected by squamous cell carcinoma (SCC) and adenocarcinoma (ADC) were retrospectively collected from a public dataset. Original segmentations (automated plus manual refinement approach) were provided together with CT images. Through the matRadiomics tool, manual segmentation of the volume of interest (VOI) was repeated by two training physicians and 107 features were extracted. Feature extraction was also performed using the original segmentations. Therefore, three datasets of extracted features were obtained and compared computing the difference percentage coefficient (DP) and the intraclass correlation coefficient (ICC). Moreover, feature reduction and selection on each dataset were performed using a hybrid descriptive inferential method and the differences among the three feature subsets were evaluated. Successively, three classification models were obtained using the Linear Discriminant Analysis (LDA) classifier. Validation was performed through 10 times repeated 5-fold stratified cross validation. As result, even if 87% features obtained an ICC > 0.8, showing robustness, an AVGDP (averaged DP) equal to 16.2% was observed between the datasets based on manual segmentation. Moreover, manual segmentation had an impact on the subsets of selected features, thus influencing study reproducibility and model explainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. Cancer J. Clin. 72, 7–33 (2022). https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  2. Dalmartello, M., et al.: European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann. Oncol. 33, 330–339 (2022). https://doi.org/10.1016/j.annonc.2021.12.007

    Article  Google Scholar 

  3. Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.: Cancer statistics, 2023. Cancer J. Clin. 73, 17–48 (2023). https://doi.org/10.3322/caac.21763

    Article  Google Scholar 

  4. Duma, N., Santana-Davila, R., Molina, J.R.: Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 94, 1623–1640 (2019). https://doi.org/10.1016/j.mayocp.2019.01.013

    Article  Google Scholar 

  5. Travis, W.D., et al.: The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thoracic Oncol. 10, 1243–1260 (2015). https://doi.org/10.1097/JTO.0000000000000630

    Article  Google Scholar 

  6. Xing, P.-Y., et al.: What are the clinical symptoms and physical signs for non-small cell lung cancer before diagnosis is made? A nation-wide multicenter 10-year retrospective study in China. Cancer Med. 8, 4055–4069 (2019). https://doi.org/10.1002/cam4.2256

    Article  Google Scholar 

  7. Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: [Radiomics and artificial intelligence: new frontiers in medicine.]. Recenti Prog. Med. 111, 130–135 (2020). https://doi.org/10.1701/3315.32853

  8. Mayerhoefer, M.E., et al.: Introduction to radiomics. J. Nucl. Med. 61, 488–495 (2020). https://doi.org/10.2967/jnumed.118.222893

    Article  Google Scholar 

  9. Cuocolo, R., et al.: Machine learning applications in prostate cancer magnetic resonance imaging. Eur. Radiol. Exp. 3, 35 (2019). https://doi.org/10.1186/s41747-019-0109-2

    Article  Google Scholar 

  10. Comelli, A., et al.: Radiomics: a new biomedical workflow to create a predictive model. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) Medical Image Understanding and Analysis. Communications in Computer and Information Science, vol. 1248, pp. 280–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_22

    Chapter  Google Scholar 

  11. Alongi, P., et al.: 18F-Florbetaben PET/CT to assess Alzheimer’s disease: a new analysis method for regional amyloid quantification. J. Neuroimaging 29, 383–393 (2019). https://doi.org/10.1111/jon.12601

    Article  Google Scholar 

  12. Shu, Z.-Y., et al.: Predicting the progression of Parkinson’s disease using conventional MRI and machine learning: an application of Radiomic biomarkers in whole-brain white matter. Magn. Reson. Med. 85, 1611–1624 (2021). https://doi.org/10.1002/mrm.28522

    Article  Google Scholar 

  13. Nepi, V., Pasini, G., Bini, F., Marinozzi, F., Russo, G., Stefano, A.: MRI-Based Radiomics analysis for identification of features correlated with the expanded disability status scale of multiple sclerosis patients. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., and Distante, C. (eds.) Image Analysis and Processing. ICIAP 2022 Workshops, pp. 362–373. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-13321-3_32

  14. Zwanenburg, A., et al.: The image biomarker standardization initiative: standardized quantitative Radiomics for high-throughput image-based phenotyping. Radiology. 295, 328–338 (2020). https://doi.org/10.1148/radiol.2020191145

    Article  Google Scholar 

  15. Stefano, A., et al.: Robustness of PET Radiomics features: impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170

    Article  Google Scholar 

  16. van Timmeren, J.E., Cester, D., Tanadini-Lang, S., Alkadhi, H., Baessler, B.: Radiomics in medical imaging—”how-to” guide and critical reflection. Insights Imag. 11, 91 (2020). https://doi.org/10.1186/s13244-020-00887-2

    Article  Google Scholar 

  17. Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imag. 7, 34 (2021). https://doi.org/10.3390/jimaging7020034

    Article  Google Scholar 

  18. Pasini, G., Stefano, A., Russo, G., Comelli, A., Marinozzi, F., Bini, F.: Phenotyping the histopathological subtypes of non-small-cell lung carcinoma: how beneficial is Radiomics? Diagnostics. 13, 1167 (2023). https://doi.org/10.3390/diagnostics13061167

    Article  Google Scholar 

  19. Primakov, S.P., et al.: Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nat. Commun. 13, 3423 (2022). https://doi.org/10.1038/s41467-022-30841-3

    Article  Google Scholar 

  20. Stefano, A., et al.: A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method. BMC Bioinform. 21, 325 (2020). https://doi.org/10.1186/s12859-020-03647-7

    Article  Google Scholar 

  21. Comelli, A., et al.: Development of a new fully three-dimensional methodology for tumours delineation in functional images. Comput. Biol. Med. 120, 103701 (2020). https://doi.org/10.1016/j.compbiomed.2020.103701

    Article  Google Scholar 

  22. Comelli, A., et al.: Tissue classification to support local active delineation of brain tumors. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) Medical Image Understanding and Analysis. Communications in Computer and Information Science, vol. 1065, pp. 3–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_1

    Chapter  Google Scholar 

  23. Banna, G.L., et al.: Predictive and prognostic value of early disease progression by PET evaluation in advanced non-small cell lung cancer. Oncology 92, 39–47 (2017). https://doi.org/10.1159/000448005

    Article  Google Scholar 

  24. Stefano, A., et al.: A fully automatic method for biological target volume segmentation of brain metastases. Int. J. Imag. Syst. Technol. 26, 29–37 (2016). https://doi.org/10.1002/ima.22154

    Article  Google Scholar 

  25. Stefano, A., et al.: A graph-based method for PET image segmentation in radiotherapy planning: a pilot study. In: Petrosino, A. (ed.) Image Analysis and Processing – ICIAP 2013. Lecture Notes in Computer Science, vol. 8157, pp. 711–720. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41184-7_72

    Chapter  Google Scholar 

  26. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136–150 (2016). https://doi.org/10.1002/ima.22168

    Article  Google Scholar 

  27. Bakr, S., et al.: Data for NSCLC Radiogenomics collection (2017). https://wiki.cancerimagingarchive.net/x/W4G1AQ, https://doi.org/10.7937/K9/TCIA.2017.7HS46ERV

  28. Pasini, G., Bini, F., Russo, G., Comelli, A., Marinozzi, F., Stefano, A.: MatRadiomics: a novel and complete Radiomics framework, from image visualization to predictive model. J. Imag. 8, 221 (2022). https://doi.org/10.3390/jimaging8080221

    Article  Google Scholar 

  29. Bakr, S., et al.: A Radiogenomic dataset of non-small cell lung cancer. Sci Data. 5, 180202 (2018). https://doi.org/10.1038/sdata.2018.202

    Article  Google Scholar 

  30. van Griethuysen, J.J.M., et al.: Computational Radiomics system to decode the radiographic phenotype. Can. Res. 77, e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  31. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst., Man Cybern. SMC-3, 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

  32. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4, 172–179 (1975). https://doi.org/10.1016/S0146-664X(75)80008-6

    Article  Google Scholar 

  33. Thibault, G., Angulo, J., Meyer, F.: Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans. Biomed. Eng. 61, 630–637 (2014). https://doi.org/10.1109/TBME.2013.2284600

    Article  Google Scholar 

  34. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19, 1264–1274 (1989). https://doi.org/10.1109/21.44046

    Article  Google Scholar 

  35. Sun, C., Wee, W.G.: Neighboring gray level dependence matrix for texture classification. Comput. Vis., Graph. Image Process. 23, 341–352 (1983). https://doi.org/10.1016/0734-189X(83)90032-4

    Article  Google Scholar 

  36. McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1, 30–46 (1996). https://doi.org/10.1037/1082-989X.1.1.30

    Article  Google Scholar 

  37. Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer Radiomics. Appl. Stoch. Model. Bus. Ind. 37, 961–972 (2021). https://doi.org/10.1002/asmb.2642

    Article  MathSciNet  Google Scholar 

  38. Comelli, A., et al.: Active contour algorithm with discriminant analysis for delineating Tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/j.artmed.2019.01.002

    Article  Google Scholar 

  39. Parmar, C., et al.: Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9, e102107 (2014). https://doi.org/10.1371/journal.pone.0102107

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the two training physicians, namely Accursio Scaduto and Francesco Cutrì, for having inspected the DICOM volume, manually segmented the NSCLCs and for feature extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pasini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pasini, G. (2024). Assessing the Robustness and Reproducibility of CT Radiomics Features in Non-small-cell Lung Carcinoma. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51026-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51025-0

  • Online ISBN: 978-3-031-51026-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics