Skip to main content

Development of Improved Landraces in Agriculture for Rural Development

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Landraces serve as reservoirs of genetic diversity, contributing to the enrichment of biodiversity and the preservation and stabilization of ecosystems in a sustainable manner, thereby promoting their functional integrity. These landraces serve as invaluable genetic assets, embodying a rich blend of genes and traits shaped by the interactions between farmers, crops, and their environment. Over centuries, they have laid the genetic foundation of agriculture, offering traits associated with local adaptation, stress resilience, consistent yields, and nutritional value. Despite their comparatively lower productivity than modern cultivars, landraces have gained significance as reservoirs of genetic diversity, particularly for traits related to stress tolerance and resistance. They possess a diverse genetic heritage, making them valuable resources for future crop development, potentially enhancing crop performance, albeit with interactions with environmental factors. Landraces have also shown resistance to pathogens, holding untapped potential for further utilization. Moreover, they offer the prospect of improving the nutritional quality of cereal crops by enhancing traits like antioxidants, phenolics, carotenoids, and mineral content. This chapter emphasizes the importance of participatory plant breeding and variety selection in improving landraces, particularly in stressed situations where sustainability is a top goal. It also underscores the pivotal role of landraces in scientific plant breeding and their contribution to maintaining genetic diversity essential for creating new crop varieties. Additionally, mentions the current trend of landrace abandonment in favor of modern, high-yielding varieties in certain areas and emphasizes the multifaceted impact of enhancing landraces on rural development, encompassing food security, nutrition, income generation, and climate resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez N, Garine E, Khasah C, Dounias E, Hossaert-McKey M, McKey D (2005) Farmers’ practices, metapopulation dynamics, and conservation of agricultural biodiversity on-farm: a case study of sorghum among the Duupa in sub-sahelian Cameroon. Biol Cons 121(4):533–543

    Article  Google Scholar 

  • Azeez MA, Adubi AO, Durodola FA (2018) Landraces and crop genetic improvement. In: Rediscovery of landraces as a resource for the future. IntechOpen

    Google Scholar 

  • Bellon MR, van Etten J (2014) Climate change and on-farm conservation of crop landraces in centres of diversity. Plant genetic resources and climate change, pp 137–150

    Google Scholar 

  • Bhagowati RR, Changkija S (2009) Genetic variability and traditional practices in Naga King Chili landraces of Nagaland. Asian Agri-History 13(3):171–180

    Google Scholar 

  • Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella AIN (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47(5):1955–1963

    Article  Google Scholar 

  • Brown AH (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. Genes in the field, pp 29–48

    Google Scholar 

  • Casañas F, Simó J, Casals J, Prohens J (2017) Toward an evolved concept of landrace. Front Plant Sci 8:145

    Article  Google Scholar 

  • Castillo-Aguilar CC, Castilla LL, Pacheco N, Cuevas-Bernardino JC, Garruña R, Andueza-Noh RH (2021) Phenotypic diversity and capsaicinoid content of chilli pepper landraces (Capsicum spp.) from the Yucatan Peninsula. Plant Genet Resourc 19(2):159–166

    Google Scholar 

  • Corrado G, Caramante M, Piffanelli P, Rao R (2014) Genetic diversity in Italian tomato landraces: implications for the development of a core collection. Sci Hortic 168:138–144

    Article  Google Scholar 

  • de Carvalho MAP, Bebeli PJ, Bettencourt E, Costa G, Dias S, Santos TMD, Slaski JJ (2013) Cereal landraces genetic resources in worldwide GeneBanks. A review. Agron Sustain Develop 33:177–203

    Article  CAS  Google Scholar 

  • Freitas TGGD, Silva PSLE, Dovale JC, Silva E (2016) Green bean yield and path analysis in cowpea landraces. Revista Caatinga 29:866–877

    Article  Google Scholar 

  • Fullana-Pericàs M, Conesa MÀ, Douthe C, El Aou-ouad H, Ribas-Carbó M, Galmés J (2019) Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agric Water Manag 223:105722

    Article  Google Scholar 

  • Hasanuzzaman M, Hakim MA, Fersdous J, Islam MM, Rahman L (2012) Combining ability and heritability analysis for yield and yield contributing characters in chilli (Capsicum annuum) landraces. Plant Omics 5(4):337–344

    Google Scholar 

  • Hour AL, Hsieh WH, Chang SH, Wu YP, Chin HS, Lin YR (2020) Genetic diversity of landraces and improved varieties of rice (Oryza sativa L.) in Taiwan. Rice 13:1–12

    Article  Google Scholar 

  • Hurtado M, Vilanova S, Plazas M, Gramazio P, Andújar I, Herraiz FJ, Castro A, Prohens J (2014) Enhancing conservation and use of local vegetable landraces: the Almagro eggplant (Solanum melongena L.) case study. Genet Resour Crop Evol 61:787–795

    Article  Google Scholar 

  • Ishikawa R, Yamanaka S, Fukuta Y, Chitrakon S, Bounphanousay C, Kanyavong K, Tang LH, Nakamura I, Sato T, Sato YI (2006) Genetic erosion from modern varieties into traditional upland rice cultivars (Oryza sativa L.) in northern Thailand. Genet Resour Crop Evol 53:245–252

    Article  Google Scholar 

  • Jaradat AA (2013) Wheat landraces: a mini review. Emirates J Food Agric 20–29

    Google Scholar 

  • Karkee A, Mainali RP, Basnet S, Ghimire KH, Joshi BK, Thapa P, Shrestha DS, Joshi P, Pokhrel P, Mishra KK (2021) Agro-Morphological characterization and intra-varietal diversity of Akabarechilli (Capsicum spp.) landraces of Nepal. SAARC J Agric 19(2):37–55

    Google Scholar 

  • Luna-Ruiz JDJ, Nabhan GP, Aguilar-Meléndez A (2018) Shifts in plant chemical defenses of chile pepper (Capsicum annuum L.) due to domestication in Mesoamerica. Front Ecol Evol 6:48

    Google Scholar 

  • Marone D, Russo MA, Mores A, Ficco DB, Laidò G, Mastrangelo AM, Borrelli GM (2021) Importance of landraces in cereal breeding for stress tolerance. Plants 10(7):1267

    Article  CAS  Google Scholar 

  • Martin P, Shoemark O, Scholten M, Wishart J, Drucker AG, Maxted N (2023) Trends, challenges and opportunities in the in situ conservation of cereal landraces in Scottish islands. In: Genetic resources. European Cooperative Programme for Plant Genetic Resources (ECPGR)

    Google Scholar 

  • Meghvansi MK, Siddiqui S, Khan MH, Gupta VK, Vairale MG, Gogoi HK, Singh L (2010) Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J Ethnopharmacol 132(1):1–14

    Article  CAS  Google Scholar 

  • Muñoz-Falcón JE, Vilanova S, Plazas M, Prohens J (2011) Diversity, relationships, and genetic fingerprinting of the Listada de Gandía eggplant landrace using genomic SSRs and EST-SSRs. Sci Hortic 129(2):238–246

    Article  Google Scholar 

  • Newcomb M, Acevedo M, Bockelman HE, Brown-Guedira G, Goates BJ, Jackson EW, Jin Y, Njau P, Rouse MN, Singh D, Wanyera R (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant Dis 97(7):882–890

    Article  CAS  Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M (2011) Cereal landraces for sustainable agriculture. Sustain Agric 2:147–186

    Google Scholar 

  • Oliveira HR, Campana MG, Jones H, Hunt HV, Leigh F, Redhouse DI, Lister DL, Jones MK (2012) Tetraploid wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity. PLoS ONE 7(5):e37063

    Article  CAS  Google Scholar 

  • Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100(5):925–940

    Article  Google Scholar 

  • Polegri L, Negri V (2010) Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet Resour Crop Evol 57:867–880

    Article  CAS  Google Scholar 

  • Pollak LM (2003) The history and success of the public-private project on germplasm enhancement of maize (GEM). Adv Agron 78:46–89

    Google Scholar 

  • Prasanna BM (2010) Phenotypic and molecular diversity of maize landraces: characterization and utilization. Indian J Genet Plant Breed 70(04):315–327

    Google Scholar 

  • Pusadee T, Jamjod S, Chiang YC, Rerkasem B, Schaal BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Natl Acad Sci 106(33):13880–13885

    Article  CAS  Google Scholar 

  • Qi Y, Zhang D, Zhang H, Wang M, Sun J, Wei X, Qiu Z, Tang S, Cao Y, Wang X, Li Z (2006) Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Chin Sci Bull 51:681–688

    Article  CAS  Google Scholar 

  • Sacco A, Ruggieri V, Parisi M, Festa G, Rigano MM, Picarella ME, Mazzucato A, Barone A (2015) Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10(9):e0137139

    Article  Google Scholar 

  • Scarano A, Olivieri F, Gerardi C, Liso M, Chiesa M, Chieppa M, Frusciante L, Barone A, Santino A, Rigano MM (2020) Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J Sci Food Agric 100(6):2791–2799

    Article  CAS  Google Scholar 

  • Spataro G, Negri V (2013) The European seed legislation on conservation varieties: focus, implementation, present and future impact on landrace on farm conservation. Genet Resour Crop Evol 60:2421–2430

    Article  Google Scholar 

  • Thanopoulos R, Chatzigeorgiou T, Argyropoulou K, Kostouros NM, Bebeli PJ (2021) State of crop landraces in Arcadia (Greece) and in-situ conservation potential. Diversity 13(11):558

    Article  Google Scholar 

  • Villa TCC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resourc 3(3):373–384

    Article  Google Scholar 

  • Walters SA (2018) Essential role of crop landraces for world food security. Mod Concepts Dev Agron 1:1–4

    Google Scholar 

  • Wätjen A, Huyskens-Keil S, Stöber S (2021) Nutritional assessment of Indonesian Chilli landraces (Capsicum chinense Jaqc.). In: IOP conference series: earth and environmental science, vol 748, No. 1. IOP Publishing, p 012033

    Google Scholar 

  • Yatung T, Dubey RK, Singh V, Upadhyay G (2014) Genetic diversity of chilli (‘Capsicum annuum L.) genotypes of India based on morpho-chemical traits. Aust J Crop Sci 8(1):97–102

    Google Scholar 

  • Yumnam JS, Tyagi W, Pandey A, Meetei NT, Rai M (2012) Evaluation of genetic diversity of chilli landraces from North Eastern India based on morphology, SSR markers and the Pun1 locus. Plant Mol Biol Report 30:1470–1479

    Article  CAS  Google Scholar 

  • Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA, Carol P (2017) Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. J Plant Physiol 218:26–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. C. K. Fonseka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias, W.K.N.S., Anuruddi, H.I.G.K., Fonseka, D.L.C.K. (2024). Development of Improved Landraces in Agriculture for Rural Development. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_16

Download citation

Publish with us

Policies and ethics