Skip to main content

Application of Mutagenesis and Genome Editing in Crop Plants

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Mutagenesis and genome editing has emerged as a substitute to traditional plant breeding and transgenics for crop improvement and hence ensure sustainable food production. Plant breeding depends on combination of novel allelic variations which can be produced only by targeted or random mutagenesis. Mutagenesis has played a key role in the elucidation of plant growth and development mechanisms, adaptation, metabolic pathways, and signal transduction. During last few decades, different nucleases are capable of generating targeted mutations and have became important tools to improve gene editing and site-specific integration in various crop species. The rapid and exciting progress in genome editing for crop development has revolutionized plant breeding. This chapter provides insights on the methodology and applications of mutation induction and genome editing in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11(9):1126–1134

    Article  CAS  Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  Google Scholar 

  • Antunes MS, Smith JJ, Jantz D, Medford JI (2012) Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol 86:86–12

    Google Scholar 

  • Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR– cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844

    Article  CAS  Google Scholar 

  • Aouida M, Piatek MJ, Bangarusamy DK, Mahfouz MM (2014) Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr Genet 60(2):61–74

    Article  CAS  Google Scholar 

  • Atares A, Moyano E, Morales B, Schleicher P, Garcia-Abellan JO, Anton T, Pineda B (2011) An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Rep 30:1865–1879

    Article  CAS  Google Scholar 

  • Beyaz R (2014) Determination of salt tolerance of different Sainfoin (Onobrychis viciifolia Scop.) ecotypes and improvement of new sainfoin lines via in vitro mutagenesis technique (PhD thesis).Ankara University; Ankara

    Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  Google Scholar 

  • Bucchini L, Goldman LR (2002) Starlink corn: a risk analysis. Environ Health Perspect 110(1):5–13

    Article  CAS  Google Scholar 

  • Butt H, Eid A, Ali Z, Atia MA, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM (2017) Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci 8:1441

    Article  Google Scholar 

  • Campbell BW, Stupar RM (2016) Soybean (Glycine max) mutant and germplasm resources: current status and future prospects. Curr Protoc Plant Biol 1:307–327

    Article  Google Scholar 

  • Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci 5:302

    Article  Google Scholar 

  • Cao L, Wang Z, Ma H, Liu T, Ji J, Duan K (2022) Multiplex CRISPR/Cas9-mediated raffinose synthase gene editing reduces raffinose family oligosaccharides in soybean. Front Plant Sci 13:1048967

    Article  Google Scholar 

  • Carroll D (2017) Genome editing: past, present, and future. Yale J Biol Med 90(4):653–659

    CAS  Google Scholar 

  • Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16(7):1200–1207

    Article  CAS  Google Scholar 

  • Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:1–15

    Article  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  Google Scholar 

  • Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z, Deshmukh R (2019a) Mutation breeding in tomato: advances, applicability and challenges. Plants 8(5):128

    Article  CAS  Google Scholar 

  • Chaudhary J, Deshmukh R, Sonah H (2019b) Mutagenesis approaches and their role in crop improvement. Plants 8(11):467

    Article  CAS  Google Scholar 

  • Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, Wang S (2021) Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol 21:1–15

    Article  CAS  Google Scholar 

  • Cheng C, Kan J, Li S, Jiang C, He X, Shen H, Xu R, Li B, Feng Z, Yang P (2022) Mutation of barley HvPDIL5-1 improves resistance to yellow mosaic virus disease without growth or yield penalties. Front Plant Sci 13:1018379

    Article  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genet 186:757–761

    Article  CAS  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  Google Scholar 

  • Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16:1–8

    Article  Google Scholar 

  • Dong H, Huang Y, Wang K (2021) The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes 12(6):912

    Article  CAS  Google Scholar 

  • Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97

    Article  CAS  Google Scholar 

  • Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170(2):667–677

    Article  CAS  Google Scholar 

  • Ernest FP, Noëlle MAH, Godswill NN, Thiruvengadam M, Simon OA, Bille NH, Shariati MA (2020) Radiosensitivity of two varieties of watermelon (Citrullus lanatus) to different doses of gamma irradiation. Braz. J. Bot. 43:897–905

    Article  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Google Scholar 

  • Gao C (2015) Genome editing in crops: from bench to field. Natl Sci Rev 2:13–15

    Article  CAS  Google Scholar 

  • Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–2163

    Article  CAS  Google Scholar 

  • Ghag SB, Alok A, Rajam MV, Penna S (2022) Designing climate-resilient crops for sustainable agriculture: a silent approach. J Plant Growth Regul 41(8):1–20

    Google Scholar 

  • Gnanamurthy S, Dhanavel D, Girija M (2011) Studies on induced chemical mutagenesis in maize (Zea mays L.). Int J Curr Res 3:037–040

    Google Scholar 

  • Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC (2022) Genome editing for sustainable crop improvement and mitigation of biotic and abiotic stresses. Plants 11(19):2625

    Article  CAS  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940

    Article  CAS  Google Scholar 

  • Hwang HH, Yu M, Lai EM (2017) Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book, 15

    Google Scholar 

  • Ito H, Yoshida T, Tsukahara S, Kawabe A (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518:256–261

    Article  CAS  Google Scholar 

  • Jankele R, Svoboda P (2014) TAL effectors: tools for DNA targeting. Brief Funct Genom 13(5):409–419

    Article  CAS  Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. Biotechnol. Plant Mutation Breeding: Protoc, 3–18

    Google Scholar 

  • Jia H, Orbovic V, Jones JB, Wang N (2015) Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccpthA4:dCsLOB1.3 infection. Plant Biotechnol. J 14(5):1291–1301

    Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15(7):817–823

    Article  CAS  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15(5):648–657

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci 337:816–821

    Article  CAS  Google Scholar 

  • Johnson A, Mcassey E, Diaz S, Reagin J, Redd PS, Parrilla DR, Hancock CN (2021) Development of mPing-based activation tags for crop insertional mutagenesis. Plant Direct. 5:e00300

    Article  CAS  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  Google Scholar 

  • Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC (2021) CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. Plants 10(10):2055

    Article  CAS  Google Scholar 

  • Kaur M, Thind KS, Sanghera GS, Kumar R, Kashyap L (2016) Gamma rays induced variability for economic traits, quality and red rot resistance in sugarcane (Saccharum spp.). Int J Sci Environ Technol, 355–365

    Google Scholar 

  • Ke C, Guan W, Bu S, Li X, Deng Y, Wei Z, Zheng Y (2019) Determination of absorption dose in chemical mutagenesis in plants. PLoS ONE 14(1):e0210596

    Article  CAS  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109

    Article  CAS  Google Scholar 

  • Khalil AM (2020) The genome editing revolution: review. J Genet Eng Biotechnol 18:68

    Article  Google Scholar 

  • Khan S, Al-Qurainy F, Anwar F (2009) Sodium azide: A chemical mutagen for enhancement of agronomic traits of crop plants. Environ We Int J Sci Tech 4:1–21

    CAS  Google Scholar 

  • Khursheed S, Raina A, Laskar RA, Khan S (2018) Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Int J Cytol Cytosystem Cytogenet 71:397–404

    Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  Google Scholar 

  • Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre S, Das BK, Deshmukh R (2019) Fast neutron mutagenesis in plants: Advances, applicability and challenges

    Google Scholar 

  • Lau SE, Teo WFA, Teoh EY, Tan BC (2022) Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov Food 2(1):9

    Article  Google Scholar 

  • Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016a) Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2(10):1–6

    Article  Google Scholar 

  • Li J, Zhang H, Si X, Tian Y, Chen K, Liu J, Chen H, Gao C (2017) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genomics 44(9):465–468

    Article  CAS  Google Scholar 

  • Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016b) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    Google Scholar 

  • Li S, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36(12):1160–1163

    Article  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392

    Article  CAS  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

    Article  Google Scholar 

  • Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Broglie RM (2014) Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. Plant Cell Rep 33:617–631

    Article  CAS  Google Scholar 

  • Magdy AM, Fahmy EM, Al-Ansary AERMF, Awad G (2020) Improvement of 6-Gingerol production in ginger rhizomes (Zingiberofficinale Roscoe) plants by mutation breeding using gamma irradiation. Appl Radiat Isot 162:109193

    Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Google Scholar 

  • Martínez-Fortún J, Phillips DW, Jones HD (2017) Potential impact of genome editing in world agriculture. Emerg Top Life Sci 1(2):117–133

    Article  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236

    Article  CAS  Google Scholar 

  • Moin M, Bakshi A, Madhav MS, Kirti PB (2018) Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Brief Funct Genom 17:339–351

    Article  CAS  Google Scholar 

  • Muto N, Matsumoto T (2022) CRISPR/Cas9-mediated genome editing of RsGL1a and RsGL1b in radish (Raphanus sativus L.). Front Plant Sci 13,951660

    Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6(3):19–40

    Article  CAS  Google Scholar 

  • Ogata T, Ishizaki T, Fujita M, Fujita Y (2020) CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS ONE 15:0243376

    Article  Google Scholar 

  • Okamoto N, Maeda M, Yamamoto C, Kodama R, Sugimoto K, Shinozaki Y, Ezura H, Kimura Y (2022) Construction of tomato plants with suppressed endo-β-N-acetyl glucosaminidase activity using CRISPR-Cas9 mediated genome editing. Plant Physiol Biochem 190:203–211

    Article  CAS  Google Scholar 

  • Palpant NJ, Dudzinski D (2013) Zinc finger nucleases: looking toward translation. Gene Ther 20(2):121–127

    Article  CAS  Google Scholar 

  • Papaioannou I, Simons JP, Owen JS (2012) Oligonucleotide-directed geneediting technology: mechanisms and future prospects. Expert Opin Biol Ther 12(3):329–342

    Article  CAS  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Bio Plant 51(1):1–8

    Article  CAS  Google Scholar 

  • Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review. Agron Sustain Dev 33:243–255

    Article  Google Scholar 

  • Ram H, Soni P, Salvi P, Gandass N, Sharma A, Kaur A, Sharma TR (2019) Insertional mutagenesis approaches and their use in rice for functional genomics. Plants 310:8–9

    Google Scholar 

  • Ramamoorthy R, Jiang SY, Ramachandran S (2011) Oryza sativa cytochrome P450 family member OsCYP96B4 reduces plant height in a transcript dosage dependent manner. PLoS ONE 611:e28069

    Article  Google Scholar 

  • Ramkumar MK, Senthil Kumar S, Gaikwad K, Pandey R, Chinnusamy V, Singh NK, Sevanthi AM (2019) A novel stay-green mutant of rice with delayed leaf senescence and better harvest index confers drought tolerance. Plants 8(10):375

    Article  CAS  Google Scholar 

  • Ran Y, Liang Z, Gao C (2017) Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60(5):490–505

    Article  CAS  Google Scholar 

  • Salava H, Thula S, Mohan V, Kumar R, Maghuly F (2021) Application of genome editing in tomato breeding: Mechanisms, advances, and prospects. Int J Mol Sci 22:682

    Article  CAS  Google Scholar 

  • Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schöpke CR, Gocal GF (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170(4):1917–1928

    Article  CAS  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  Google Scholar 

  • Sochiocchet MA, Noldin JA, Raimondi JV, Tulmann Neto A, Marschalek R, Wickert E, Andrade AD (2014) SCS118 Marques-New rice cultivar obtained through induced mutation. Crop Breed Appl Biotechnol 14:68–70

    Article  Google Scholar 

  • Serrat X, Esteban R, Guibourt N, Moysset L, Nogues S, Lalanne E (2014) EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10:5

    Article  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnol J 13(6):791–800

    Article  CAS  Google Scholar 

  • Sharma A, Singh SK (2013) Induced mutation-a tool for creation of genetic variability in rice (Oryza sativa L.). J Crop Weed 9:132–138

    Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  Google Scholar 

  • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631

    Article  CAS  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  Google Scholar 

  • Szarejko I, Szurman-Zubrzycka M, Nawrot M, Marzec M, Gruszka D, Kurowska M, Maluszynski M (2017) Creation of a TILLING population in barley after chemical mutagenesis with sodium azide and MNU. Biotechnol Plant Mutation Breeding: Protoc, 91–111

    Google Scholar 

  • Szurman-Zubrzycka ME, Zbieszczyk J, Marzec M, Jelonek J, Chmielewska B, Kurowska MM, Szarejko I (2018) Hor TILLUS—A rich and renewable source of induced mutations for forward/reverse genetics and pre-breeding programs in barley (Hordeum vulgare L.). Front Plant Sci 9:216

    Google Scholar 

  • Takeuchi R, Lambert AR, Mak ANS, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci USA 108:13077–13082

    Article  CAS  Google Scholar 

  • Thangwana A, Gwata ET, Zhou MM (2021) Impact of chemical mutagenesis using ethyl methane sulphonate on tepary bean seedling vigour and adult plant performance. Heliyon. 7:1

    Article  Google Scholar 

  • Thyme SB, Boissel SJS, Arshiya Quadri S, Nolan T, Baker DA, Park RU, Kusak L, Ashworth J, Baker D (2013) Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Res 42(4):2564–2576

    Article  Google Scholar 

  • Toda E, Okamoto T (2020) CRISPR/Cas9-based genome editing using rice zygotes. Curr Protoc. Plant Biol 5(2):20111

    Article  Google Scholar 

  • Turkoglu A, Tosun M, Haliloglu K (2022) Mutagenic effects of sodium azide on in vitro mutagenesis, polymorphism and genomic instability in wheat (Triticum aestivum L.). Mol Biol Rep 49:10165–10174

    Article  CAS  Google Scholar 

  • Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A (2019) Mutagenesis in rice: the basis for breeding a new super plant. Front Plant Sci 10:1326

    Article  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877

    Article  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532(7599):293

    Article  CAS  Google Scholar 

  • Wang JS, Sui JM, Xie YD, Guo HJ, Qiao LX, Zhao LL, Liu LX (2015) Generation of peanut mutants by fast neutron irradiation combined with in vitro culture. J Radiat Res 56:437–445

    Article  CAS  Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604

    Article  CAS  Google Scholar 

  • Wani MR, Kozgar MI, Tomlekova N, Khan S, Kazi AG, Sheikh SA, Ahmad P (2014) Mutation Breeding: a novel technique for genetic improvement of pulse crops particularly chickpea (Cicer arietinum L.). In: Ahmad P, Wani M, Azooz M, Phan Tran LS (eds) Improvement of crops in the era of climatic changes. Springer, New York, NY

    Google Scholar 

  • Yali W, Mitiku T (2022) Mutation breeding and its importance in modern plant breeding. J Plant Sci 10:64–70

    Google Scholar 

  • Yang SH, Kim E, Park H, Koo Y (2022) Selection of the high efficient sgRNA for CRISPR-Cas9 to edit herbicide related genes, PDS, ALS, and EPSPS in tomato. Appl Biol Chem 65:13

    Article  CAS  Google Scholar 

  • Yao J, Bai J, Liu S, Fu J, Zhang Y, Luo T, Ren H, Wang R, Zhao Y (2022) Editing of a novel cd uptake-related gene CUP1 contributes to reducing cd accumulations in Arabidopsis thaliana and Brassica napus. Cells 11(23):3888

    Article  CAS  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91(4):714–724

    Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19:210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Mahajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S., Sagar, T., Kapoor, N., Mahajan, R. (2024). Application of Mutagenesis and Genome Editing in Crop Plants. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_14

Download citation

Publish with us

Policies and ethics