Skip to main content

Genetic Improvement of Rural Landraces Through Mutation Research

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Rural landraces are heterogeneous cultivars possessing valuable, unique characteristics, and are widely adapted to specific eco-geographical areas. Due to the absence of artificial selection, formal breeding applications, and minimum bottle neck event, rural landraces have classically preserved, and retained most of the beneficial genes. Since long ago rural landraces have been explored for the genes of interest for various breeding programs for improvement of yield, quality, as well as stress tolerance traits. Rural landraces are generally not cultivated for commercial purpose due to the lower economic returns, and fail to compete with other commercial, and modern cultivars. However, improvement of specific defects can fit the rural landraces for commercial purpose. Mutation approaches have been exploited intensively for improving yield contributing characters, quality, and resistance for biotic and abiotic stresses in crops. Hence, mutation could be a potential strategy for improving the specific traits of rural landraces. In addition to utilize the physical and chemical mutagens, advanced genome editing tools have been utilized for editing specific genes and/or base pair mutation. This chapter discusses the potential applications of mutation to improve the rural landraces for agronomic, quality, and resistance to biotic and abiotic stresses. In addition to highlight the successful stories, the chapter also covers the current progress of mutation research as well as their potential challenges, and limitations in landraces improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahir DK, Kumar R, Chetariya CP et al (2023) Effect of mutation on seed yield per plant and chlorophyll content in M3 generation of green gram [Vigna radiata (L.) R. Wilczek]. Int J Environ Climate Change 13(8):1001–1013

    Google Scholar 

  • Amin R, Wani MR, Raina A et al (2019) Induced morphological and chromosomal diversity in Jordan. J Biol Sci 12:23–30

    CAS  Google Scholar 

  • Arisha MH, Shah SNM et al (2015) Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Front Plant Sci 6:1–11

    Article  Google Scholar 

  • Atarés A, Moyano F et al (2011) An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Rep 30:1865–1879

    Article  Google Scholar 

  • Badigannavar A, Girish G et al (2018) Gamma ray induced genetic improvement of sorghum landraces for grain yield and charcoal rot tolerance. Elect J Plant Breed 9:894–898

    Article  Google Scholar 

  • Bado S, Forster BP, Nielen S et al (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev 39:23–88

    Google Scholar 

  • Bhoi A, Yadu B, Chandra J, Keshavkant S (2022) Mutagenesis: a coherent technique to develop biotic stress resistant plants. In: Plant stress. Elsevier B.V. 3

    Google Scholar 

  • Biswal AK, Wu TY et al (2022) Novel mutant alleles reveal a role of the extra-large G protein in rice grain filling, panicle architecture, plant growth, and disease resistance. Front Plant Sci 12:782960

    Article  Google Scholar 

  • Brown N, Wayne Smith C et al (2013) Improvement of upland cotton fiber quality through mutation of TAM 94L-25. Crop Sci 53(2):452–459

    Article  CAS  Google Scholar 

  • Casañas F, Casals J, Prohens P (2017) Towards and evolved concept of landrace. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00145

  • Celik O, Atak C (2017) Applications of Ionizing radiation in mutation breeding. In: Maghraby AM (ed) New insights on gamma rays, 6th edn. Intech Open, London, pp 111–132

    Google Scholar 

  • Chaudary J, Yadav SK, Shivaraj SM, Sonah H (2019). Mutation breeding in tomato: advances, applicability and challenges. Plants 1–17

    Google Scholar 

  • Chaudhary J, Deshmukh R, Sonah H (2019) Mutagenesis approaches and their role in crop improvement. Plants 8:467

    Article  CAS  Google Scholar 

  • Channaoui S, Labhilili M, Mouhib M et al (2019) Development and evaluation of diverse promising rapeseed (Brassica napus L.) mutants using physical and chemical mutagens. Ocl 26:35

    Google Scholar 

  • Chigira K, Kojima N, Yamasaki M et al (2020) Landraces of temperate japonica rice have superior alleles for improving culm strength associated with lodging resistance. Sci Rep 10:19855

    Article  CAS  Google Scholar 

  • Datta SK (2015) Indian floriculture, role of CSIR. Regency Pub. Div. Asral Int. (P) Ltd., New Delhi

    Google Scholar 

  • Desai S, Jadhav A et al (2021) Genetic improvement of two Indian non-basmati aromatic rice landraces through physical and chemical mutagenesis. Int J Radiation Biol 98:82–89

    Article  Google Scholar 

  • Dewi AK, Dwimahyani I et al (2020) Application of induced mutation technique to improve genetic variability of Indonesian traditional rice varieties. In: IOP conference series: earth and environmental science, vol 482(1)

    Google Scholar 

  • Dwivedi SL, Ceccarelli S et al (2015) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21

    Google Scholar 

  • Fujita D, Trijatmiko KR et al (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA 110:20431–20436

    Article  CAS  Google Scholar 

  • Gaikwad NB, Bapat VA (2023) Mutation breeding studies in the Indian non-basmati aromatic rice: success and outlook. In: Penna S, Jain SM (eds) Mutation breeding for sustainable food production and climate resilience. Springer, Singapore

    Google Scholar 

  • Gareeb YE, Soliman SS et al (2022) Improvement of German chamomile (Matricaria recutita L.) for mechanical harvesting, high flower yield and essential oil content using physical and chemical mutagenesis. Plants 11:2940

    Google Scholar 

  • Ge H, Li Y, Fu H et al (2015) Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis with EMS. Plant Cell Tiss Organ Cult 123:29–38

    Google Scholar 

  • Haleem A, Mohammed MA et al (2012) Pre-exposure to gamma rays alleviates the harmful effect of salinity on cowpea plants. J Stress Physiol Biochem 8:4

    Google Scholar 

  • Haque T, Elias SM et al (2022) Salt tolerance QTLs of an endemic rice landrace, Horkuch at seedling and reproductive stages. Sci Rep 12:17306

    Article  CAS  Google Scholar 

  • He SZ, Han YF, Wang YP et al (2009) In vitro selection and identification of sweet potato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tis Organ Cult 96:69–74

    Article  CAS  Google Scholar 

  • Hoffie RE, Perovic D et al (2022) Novel resistance to the Bymovirus BaMMV established by targeted mutagenesis of the PDIL5-1 susceptibility gene in barley. Plant Biotechnol J 21:331–341

    Article  Google Scholar 

  • Horn LN, Ghebrehiwot HM et al (2016) Selection of novel cowpea genotypes derived through gamma irradiation. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Hossain A, Maitra S et al (2022) Wild relatives of plants as soruces for the development of abiotic stress tolerance in plants. In: Plant perspectives global climate changes, pp 471–518

    Google Scholar 

  • Human S, Sihono, Indriatama WM (2020) Sorghum improvement program by using mutation breeding in Indonesia. In: IOP conference series: earth and environmental science, vol 484(1)

    Google Scholar 

  • Hu X, Cui Y, Dong G et al (2019) Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci Rep 9:19096

    Article  CAS  Google Scholar 

  • Hwang WJ, Kim MY et al (2015) Genome-wide analysis of mutations in a dwarf soybean mutant induced by fast neutron bombardment. Euphytica 203(2):399–408

    Article  Google Scholar 

  • Islam MA, Uddin MMBM et al (2022) In vitro screening and field performance of EMS-treated eggplants for the selection of shoot and fruit borer-resistant plants. Agronomy 12(8):1831

    Article  Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. Biotechnol Plant Mutat Breed: Protoc 1–3

    Google Scholar 

  • Jankowicz-Cieslak J, Tai TH et al (2016) Biotechnologies for plant mutation breeding: protocols. Biotechnol Plant Mutat Breed: Protoc 1–340

    Google Scholar 

  • Jayabalan S, Pulipati S et al (2019) Analysis of genetic diversity and population structure using SSR markers and validation of a Cleavage Amplified Polymorphic Sequences (CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice (Oryza sativa L.) landraces. Gene 713:143976

    Google Scholar 

  • Kanouni H, Taleei A, Okhovat M (2011) Ascochyta blight (Ascochyta rabiei (Pass.) Lab.) of chickpea (Cicer arietinum L.): breeding strategies for resistance. Int J Plant Breed Genet 5:1–22

    Article  Google Scholar 

  • Katiyar P, Pandey N, Keshavkant S (2022) Gamma radiation: a potential tool for abiotic stress mitigation and management of agroecosystem. In: Plant stress. Elsevier B.V. 5

    Google Scholar 

  • Katouzi M, Navabpur S et al (2021) Variation caused mutation and identification of new drought tolerant genotypes by crossing landrace and mutant Tarom in Rice. Environ Stress Crop Sci 14:279–291

    Google Scholar 

  • Kenzhebayeva S, Abekova A et al (2019) Mutant lines of spring wheat with increased iron, zinc, and micronutrients in grains and enhanced bioavailability for human health. BioMed Res Int

    Google Scholar 

  • Karkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era, food and agriculture organization of the United Nations. Rome, pp 33–38

    Google Scholar 

  • Khan IA, Dahot MU, Khatri AA (2007) Study of genetic variability in sugarcane induced through mutation breeding. Pak J Bot 39(5):1489–1501

    Google Scholar 

  • Kharkwal MC, Pandey RN et al (2004) Mutation breeding for crop improvement. Jain HK, Kharkwal MC (eds) Plant breeding. Springer, pp 601–645

    Google Scholar 

  • Kiruki S, Onek LA et al (2006) Azide-based mutagenesis suppresses Striga hermonthica seed germination and parasitism on maize varieties. Afr J Biotech 5:866–870

    CAS  Google Scholar 

  • Kozgar MI, Wani MR et al (2014) 7. Induced mutagenesis in edible crop plants and its impact on human beings. In: Mutagenesis: exploring novel genes and pathways. Wageningen Academic Publishers, pp 167–180

    Google Scholar 

  • Kumar K, Gambhir G et al (2020) Genetically modified crops: current status and future prospects. 251:4. Springer

    Google Scholar 

  • Kunz BA, Dando PK et al (2008) UV-Induced DNA damage promotes resistance to the biotrophic pathogen Hyaloperonospora parasitica in Arabidopsis. Plant Physiol 148:1021–1031

    Article  CAS  Google Scholar 

  • Kumari R, Agrawal SB et al (2009) Evaluation of changes in oil cells and composition of essential oil in lemongrass (Cymbopogon citratus (D.C.) Stapf.) due to supplemental ultraviolet-B irradiation. Curr Sci 97(8):1137–1142

    Google Scholar 

  • Kulkarni KP, Vishwakarma C et al (2013) Phenotypic characterization and genetic analysis of dwarf and early flowering mutants of rice variety Nagina22. Oryza 50(1):18–25

    Google Scholar 

  • Lacchini E, Kiegle E et al (2020) CRISPR-mediated accelerated domestication of African rice landraces. PLoS ONE 15(3):e0229782

    Article  CAS  Google Scholar 

  • Lee KJ, Kim JB et al (2011) Alteration of Seed Storage Protein Composition in Soybean [Glycine max (L.) Merrill] Mutant Lines Induced by γ-Irradiation Mutagenesis. J Agric Food Chem 59:12405–12410

    Article  CAS  Google Scholar 

  • Li X, Xiang F et al (2021) Characterization and fine mapping of a new dwarf mutant in Brassica napus. BMC Plant Biol 21(1):1–12

    Article  Google Scholar 

  • Li J, Wang X, Dong R et al (2011) Evaluation of High-Resolution Melting for Gene Mapping in Rice. Plant Mol Bio Rep 29(4):979–985

    Article  CAS  Google Scholar 

  • Liu L, Ma X et al (2009) Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. Plant Mol Biol 71:609–626

    Article  CAS  Google Scholar 

  • Liu J, Zhao G, Geng J et al (2023) Genome-wide analysis of mutations induced by carbon ion beam irradiation in cotton. Front Plant Sci 14:1056662

    Google Scholar 

  • Marone D, Russo MA, Mores A et al (2021) Importance of landraces in cereal breeding for stress tolerance. Plants 10(7):1267

    Article  CAS  Google Scholar 

  • Maryami Z, Azimi MR et al (2020) Puroindoline (Pina-D1 and Pinb-D1) and waxy (Wx-1) genes in Iranian bread wheat (Triticum aestivum L.) landraces. Biotechnol Biotechnol Equip 34:1019–1027

    Article  Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3(1):200–231

    Article  Google Scholar 

  • Mukhopadhyay T, Bhattacharjee S (2016) Genetic diversity: its importance and measurements, vol 10. Research India Publications, New Delhi, India, pp 251–295

    Google Scholar 

  • Negri V, Maxted N, Veteläinen M (2009). European landrace conservation: an introduction. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on farm conservation, management and use: biodiversity technical bulletin no 15. European Cooperative Programme for Plant Genetic Resources, Rome

    Google Scholar 

  • Njau ON, Kinyua MG et al (2006) Drought tolerant wheat varieties developed through mutation breeding technique. J Agric Sci Technol 7

    Google Scholar 

  • Okasa AM, Riadi M, Toriyama K et al (2020) Mutation breeding for improvement of aromatic rice mutant by using ion beam irradiation. In: IOP conference series: earth and environmental science, vol 486(1)

    Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N et al (2015) Principle, and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16

    Article  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    Article  CAS  Google Scholar 

  • Patil A, Taware SP, Oak MD et al (2007) Improvement of oil quality in soybean [Glycine max (L.) Merrill] by mutation breeding. JAOCS, J Am Oil Chemists’ Soc 84(12):1117–1124

    Google Scholar 

  • Raina A, Laskar RA, Khursheed S et al (2017) Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in Chickpea. Int Lett Nat Sci 61:14–22

    Google Scholar 

  • Rahman MA, Thomson MJ et al (2019) Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. Rice 63:3897

    Google Scholar 

  • Ramkumar MK, Senthil Kumar S et al (2019) A novel stay-green mutant of rice with delayed leaf senescence and better harvest index confers drought tolerance. Plants 8(10):375

    Article  CAS  Google Scholar 

  • Ruswandi D, Agustian, Anggia EP (2014) Mutation breeding of maize for anticipating global climate change in Indonesia. Asian J Agri Res 8(5):234–247

    Google Scholar 

  • Salam MA, Islam MT (1994) Growth, yield and leaf-water attributes of some advanced mutant lentil lines under different soil moisture regimes. Lens Newsl 21:32–35

    Google Scholar 

  • Sao R, Sahu PK, Patel RS et al (2022) Genetic improvement in plant architecture, maturity duration and agronomic traits of three traditional rice landraces through gamma ray-based induced mutagenesis. Plants 11(24):3448

    Article  Google Scholar 

  • Sao R, Sahu PK, Mondal S et al (2021) Spectrum and frequency of macro and micro mutations induced through gamma rays in traditional rice landraces of Chhattisgarh. Elect J Plant Breed 12(3):693–706

    Google Scholar 

  • Singh H, Khar A, Verma P (2021) Induced mutagenesis for genetic improvement of Allium genetic resources: a comprehensive review. Genet Res Crop Evol 68(7):2669–2690

    Article  Google Scholar 

  • Singh G (2022) Induced mutations in barley ( Hordeum vulgare L.). Pharma Innov J 11(1):577–584

    Google Scholar 

  • Soomro A, Naqvi M et al (2006) Sustainable enhancement of rice production through the use of mutation breeding. Plant Mut Rep 1:13–17

    Google Scholar 

  • Suprasanna P, Sidha M, Bapat VA (2009) Integrated approaches of mutagenesis and in vitro selection for crop improvement. Plant tissue culture and molecular markers: their role in improving crop productivity. IK International Publishing House, New Delhi, pp 73–92

    Google Scholar 

  • Suprasanna P, Mirajkar SJ et al (2015) Induced mutations and crop improvement. In: Plant biology and biotechnology: plant diversity, organization, function and improvement, vol 1. Springer, pp 593–617

    Google Scholar 

  • Suprasanna P, Mirajkar SJ et al (2014) 17. Induced mutagenesis for improving plant abiotic stress tolerance. In: Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, pp 345–376

    Google Scholar 

  • Sun S, Fu H et al (2016) Discovery of a novel er1 allele conferring powdery mildew resistance in chinese pea (Pisum sativum L.) Landraces. PLoS One 11(1):e0147624

    Google Scholar 

  • Takele A (2021) Development of sorghum mutant genotypes and analysis of their agro-morphological diversity. Materials and methods. Res Square 1–13

    Google Scholar 

  • Tiwari AK, Srivastava RM et al (2010) Gammarays induced morphological changes in gladiolus. Prog Agric 10:75–82

    Google Scholar 

  • Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. Lentil: an ancient crop for modern times 209–224

    Google Scholar 

  • Udensi OU, Ntia MI (2014) Optimizing induced mutation technique for the improvement of agronomic traits in pigeon pea [cajanus cajan (l.) millsp.] landraces. Communicata Sci Hortic J 5:267–278

    Google Scholar 

  • Villa TC, Maxted N et al (2005) Defining and identifying crop landraces. Plant Genet Res 3:373–384

    Article  Google Scholar 

  • Wang Y, Wang Y et al (2016) Influence of ethnic traditional cultures on genetic diversity of rice landraces under on-farm conservation in southwest China. J Ethnobiol Ethnomedicine 12:51

    Article  Google Scholar 

  • Wang Q, Xiong H, Guo H et al (2023) Genetic analysis and mapping of dwarf gene without yield penalty in a γ-ray-induced wheat mutant. Front Plant Sci 14:1–9

    Google Scholar 

  • Xia T, Zhang L et al (2017) The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. Theor Appl Genet 130:757–766

    Article  CAS  Google Scholar 

  • Zakir M (2018) Mutation breeding and its application in crop improvement under current environmental situations for biotic and abiotic stresses. Arcjournals. Org Int J Res Stud Agri Sci 4:2454–6224

    Google Scholar 

  • Zambrano AY, Demey JR et al (2003) Selection of sugarcane plants resistant to SCMV. Plant Sci 165:221–225

    Article  CAS  Google Scholar 

  • Zhang Z, Wang J et al (2022) Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9. aBIOTECH 3:110–114

    Google Scholar 

  • Zhang MX, Xu JL, Luo RT et al (2003) Genetic analysis and breeding use of blast resistance in japonica rice mutant R917. Euphytica 130:71–76

    Article  CAS  Google Scholar 

  • Zhang A, Liu Y, Wang F et al (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39–47

    Google Scholar 

  • Zhang LL, Shu XL, Wang XY et al (2007) Characterization of indica-type giant embryo mutant rice enriched with nutritional components. Cereal Res Commun 35(3):1459–1468

    Article  CAS  Google Scholar 

  • Zulchi T, Husni A, Utami DW et al (2022) Morphological performances of mutant butterfly pea (Clitoria ternatea L.). In: AIP conference proceedings, vol 2462(January)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamilur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddique, A.B., Rahman, M.Z., Gain, N., Rahman, J. (2024). Genetic Improvement of Rural Landraces Through Mutation Research. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_12

Download citation

Publish with us

Policies and ethics