Skip to main content

Application of Mutagenesis in Food Production and Sustainable Development

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Induced mutations play an important role in increasing the genetic diversity of desirable traits in various edible and agricultural plants. It is useful for the development of novel kinds with enhanced agronomic traits, such as the greater capacity for coping with biotic and abiotic stress and improving the nutritional quality of food crops. There are numerous plant-induced mutagenesis techniques available including physical mutagens, such as UV, X-rays, and gamma rays, as well as chemical mutagens, like sodium azide, methyl methanesulfonate (MMS), or ethyl methanesulfonate (EMS). Agrobacterium and transposon-based chromosomal integration are further biological mutagens. Induced mutations contribute significantly to the development of sustainable agricultural systems for food security and economic growth. Rice, barley, chrysanthemum, wheat, soybean, and maize are the six top plants with a high number of mutant varieties. The creation of new varieties as a result of induced mutation has increased genetic diversity. This study highlights the recent advances in a field-induced mutation that enhance the potential of plant germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arumingtyas EL, Ahyar AN (2022) Genetic diversity of chili pepper mutant (Capsicum frutescens L.) resulted from gamma-ray radiation. IOP Conf Ser: Earth Environ Sci 1097:012059. https://doi.org/10.1088/1755-1315/1097/1/012059

  • Arumingtyas EL, Atiaturrochmah A, Kusnadi J (2023) Confirmation of mutation and genetic stability of the M4 generation of chili pepper’s (Capsicum frutescens L.) Ethyl Methane Sulfonate (EMS) mutant based on morphological, physiological and molecular characters. Biodiversitas 24:531–538

    Google Scholar 

  • Awan MA (1991) Use of induced mutations for crop improvement in Pakistan. Plant mutation breeding for crop improvement, vol 1. IAEA, Vienna, pp 67–72

    Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  CAS  Google Scholar 

  • Dahmani-Mardas F, Troadec C, Boualem A, Lévêque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A (2010) Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 5(2). Article e15776

    Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • Dyulgerova B, Dyulgerov N (2020) Grain yield and yield related traits of sodium azide induced barley mutant lines. J Central Eur Agric 21(1):83–91

    Article  Google Scholar 

  • Futsuhara Y (1968) Breeding of a new rice variety Reimei by gamma-ray irradiation. Gamma Field Symposia 7:87–109

    Google Scholar 

  • Grzebelus D (2018) The functional impact of transposable elements on the diversity of plant genomes. Diversity 10(2):18. https://doi.org/10.3390/d10020018

  • Ha B-K, Lee KJ, Velusamy V, Kim J-B, Kim SH, Ahn J-W, Si-Yong Kang S-Y, Kim DS (2014) Improvement of soybean through radiation-induced mutation breeding techniques in Korea. Plant Genet Resour: Charact Util 12(S1):S54–S57

    Article  CAS  Google Scholar 

  • Hailu MG, Wiendi NMA, Dinarti D (2020) Increasing ploidy level of garlic (Allium sativum L.) “Tawangmangu Baru” in-vitro using colchicine. J Trop Crop Sci 7(3):128–142

    Google Scholar 

  • Huerta-Olalde AM, Hernández-García A, López-Gómez R, Fernández-Pavía SP, Zavala-Páramo MG, Salgado-Garciglia R (2022) In vitro selection of blackberry (Rubus fruticosus ‘Tupy’) plants resistant to Botrytis cinerea using gamma ray-irradiated shoot tips. Plant Biotechnol 39(2):165–171. https://doi.org/10.5511/plantbiotechnology.22.0312b

    Article  CAS  Google Scholar 

  • Human S, Sihono, Indriatama WM (2020) Sorghum improvement program by using mutation breeding in Indonesia. In: IOP conference series: earth and environmental science, vol 484. IOP Publishing, p 012003. https://doi.org/10.1088/1755-1315/484/1/012003

  • Jankowicz-Cieslak J, Goessnitzer F, Datta S, Viljoen A, Ingelbrecht I, Till BJ (2021) Induced mutations for generating bananas resistant to fusarium wilt tropical race 4. In: Sivasankar S (Ed) Mutation breeding, genetic diversity and crop adaptation to climate change. International Atomic Energy Agency

    Google Scholar 

  • Juliandari RR, Mastuti R, Arumingtyas EL (2017) Microsatellite marker for genetic variation analysis in local chili pepper (Capsicum frutescens L.) induced by Ethyl Methane Sulfonate (EMS). J Trop Life Sci 9(2):189–194

    Google Scholar 

  • Kakar K, Xuan TD, Quan NV, Wafa IK, Tran H-D, Khanh TD, Dat TD (2019a) Efficacy of N-methyl-N-nitrosourea (MNU) mutation on enhancing the yield and quality of rice. Agriculture 9:212

    Article  CAS  Google Scholar 

  • Kakar K, Xuan TD, Quan NV, Wafa IK, Tran H-D, Khanh TD, Dat TD (2019b) Efficacy of N-Methyl-N-Nitrosourea mutation on physicochemical properties, phytochemicals, and momilactones A and B in Rice. Sustainability 11:6862

    Article  CAS  Google Scholar 

  • Kashtwari M, Wani AA, Dhar MK, Jan S, Kamili AN (2018) Development of an efficient in vitro mutagenesis protocol for genetic improvement of saffron (Crocus sativus L.). Physiol Mol Biol Plants 24(5):951–962. https://doi.org/10.1007/s12298-018-0576-6

  • Khanh TD, Duong VX, Nguyen PC, Xuan TD, Trung NT, Trung KH, Gioi DH, Hoang NH, Tran H-D, Trung DM, Huong BTT (2021) Rice breeding in vietnam: retrospects, challenges and prospects. Agriculture 11(5):397.https://doi.org/10.3390/agriculture11050397

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982. https://doi.org/10.1126/science.1095011

    Article  Google Scholar 

  • Kumar V, Chauhan A, Shinde AK, Kunkerkar RL, Sharma D, Das BK (2021) Mutation breeding in rice for sustainable crop production and food security in India. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CAB International

    Google Scholar 

  • Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING—a shortcut in functional genomics. J Appl Genet

    Google Scholar 

  • Lal M, Munda S, Dutta S, Pandey SK (2020) Identification of a novel germplasm (Jor Lab L-9) of lemon grass (Cymbopogon khasianus) rich in methyl eugenol. Crop Breed. App Biotechnol 20(3):e320720315

    Google Scholar 

  • Lee S, Costanzo S, Jia Y (2012) The structure and regulation of genes and consequences of genetic mutations. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CAB International and FAO, Cambridge, pp 31–45

    Chapter  Google Scholar 

  • Lenawaty DY, Sukma D, Syukur M, Suprapta DN, Nurcholis W, Aisyah SI (2022) Increasing the diversity of marigold (Tagetes sp.) by acute and chronic chemical induced mutation of EMS (Ethyl Methane Sulfonate). Biodiversitas 23:1399–1407

    Article  Google Scholar 

  • Liu R, Gao C, Jin J, Wang Y, Jin X, Ma H, Zhang Y, Zhang H, Qi B, Xu J (2022) Induction and identification of tetraploids of pear plants (Pyrus bretschneideri and Pyrus betulaefolia). Sci Hort 304:111322

    Article  CAS  Google Scholar 

  • Lundqvist U, Franckowiak JD, Forsterc BP (2012) Mutation catagories. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CAB International and FAO, Cambridge, pp 47–55

    Chapter  Google Scholar 

  • Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24(12):1102–1125

    Google Scholar 

  • Manzila I, Priyatno TP, Nugroho K, Terryana RT, Lestari P, Hidayat SH (2020) Molecular and morphological characterization of EMS-induced chili pepper mutants resistant to Chili veinal mottle virüs. Biodiversitas 21(4):1448–1457

    Article  Google Scholar 

  • Manzila I, Priyatno TP (2020) Genetic variations of EMS-induced chili peppers (Capsicum annuum) cv. Gelora generate geminivirus resistant mutant lines. In: IOP Conference Series: Earth Environ Sci 482:012031. https://doi.org/10.1088/1755-1315/482/1/012031

  • Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C (2019) Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants (basel) 8(7):194

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442. https://doi.org/10.1104/pp.123.2.439

  • McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38(6):579–599

    Article  CAS  Google Scholar 

  • Minoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 2010(3):69

    Article  Google Scholar 

  • Mizuno Y, Okamoto S, Hara M, Mizoguchi T (2014) EMS mutagenesis and characterization of Brassica rapa mutants. Plant Biotechnol 31(2)

    Google Scholar 

  • Nakagawa H, Kato H (2017) Induced mutations for food and energy security: challenge of inducing unique mutants for new cultivars and molecular research. Bull NARO Crop Sci 1:33–124

    Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Hirano H, Yamamura S (2006) Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in Gentiana scabra. Mol Genet Genom 275:231–241

    Article  CAS  Google Scholar 

  • Nilahayati N, Nazimah N, Handayani RS, Syahputra J, Rizky M (2022) Agronomic diversity of several soybean putative mutant lines resulting from gamma-ray irradiation in M6 generation. Nurantara Biosci 14(1):34–39

    Google Scholar 

  • Nitasaka E (2003) Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J 36:522–531

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafiia MY, Abdullaha N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  • OlaOlorun BM, Shimelis H, Laing M, Mathew I (2021) Development of wheat (Triticum aestivum L.) populations for drought tolerance and improved biomass allocation through Ethyl Methanesulphonate mutagenesis. Front Agron 3

    Google Scholar 

  • Park K-I, Ishikawa N, Morita Y, Choi J-D, Hoshino A, Iida S (2007) BHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J 49:641–654

    Article  CAS  Google Scholar 

  • Peiris R, Wickramasinghe TK, Indrasena SP (2008) M 127 A promising tomato variety developed through induced mutation technique. In: Shu QY (ed) Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium. Rome: Food and Agriculture Orga-nization of the United Nations, pp 379–380

    Google Scholar 

  • Penna S, Vitthal SB, Yadav PV (2012) In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremediation Biodiversity Bioavalability (Special Issue 1):6–14

    Google Scholar 

  • Pharmawati M, Wrasiati LP, Wijaya IMAS, Defiani R (2018) Morphological changes of Capsicum annuum L. induced by ethyl methanesulfonate (EMS) at M2 generation. Curr Agric Res J 6(1):1–7

    Google Scholar 

  • Priyanka V, Kumar R, Dhaliwal I, Kaushik P (2021) Germplasm conservation: instrumental in agricultural biodiversity—a review. Sustainability 13:6743. https://doi.org/10.3390/su13126743

    Article  Google Scholar 

  • Ram H, Soni P, Salvi P, Gandass N, Sharma A, Kaur A, Sharma TR (2019) Insertional mutagenesis approaches and their use in rice for functional genomics. Plants 8(9):310. https://doi.org/10.3390/plants8090310

    Article  CAS  Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis a potential approachfor crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, New York (NY), pp 149–187

    Chapter  Google Scholar 

  • Sarsu F, Bimpong IK, Jankuloski L (2021) Contribution of induced mutation in crops to global food security. Communicate 12(22):2–11

    Google Scholar 

  • Shahinnia F, Carrillo N, Hajirezaei M-R (2021) Engineering climate-change-resilient crops: new tools and approaches. Int J Mol Sci 22(15):7877. https://doi.org/10.3390/ijms22157877

    Article  CAS  Google Scholar 

  • Sharma A, Plaha P, Rathour R, Katoch V, Singh Y, Khalsa GS (2009) Induced mutagenesis for improvement of garden pea. Int J Veg Sci 16:60–72

    Article  Google Scholar 

  • Shoba D, Raveendran M, Manonmani S, Utharasu S, Dhivyapriya D, Subhasini G, Ramchandar S, Valarmathi R, Grover N, Krishnan SG, Singh AK, Jayaswal P, Kale P, Ramkumar MK, Mithram SVA, Mohapatra T, Singh K, Singh NK, Sarla N, Sheshshayee MS, Kar MK, Robin S, Sharma RP (2017) Development and genetic characterization of a novel herbicide (Imazethapyr) tolerant mutant in rice (Oryza sativa L.). Rice 10:10. https://doi.org/10.1186/s12284-017-0151-8

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2012) Mutagenesis as a tool in Plant genetics, functional genomics, and breeding. Int J Plant Genom 2011:314829

    Google Scholar 

  • Sofkova-Bobcheva S, Pantchev I, Kiryakov I, Chavdarov P, Muhovski Y, Sarsu F, Tomlekova N (2021) Induced mutagenesis for improvement of bean (Phaseolus vulgaris L.) Production in Bulgaria. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CAB International

    Google Scholar 

  • Tang S, Liu D-X, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Xiao Liu X, Li X, Ma W, Yang Q-Y, Guo L (2020) Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. The Plant J 104:1410–1422

    Article  CAS  Google Scholar 

  • Tetali S, Karkamkar SP, Phalake SV (2020) Mutation breeding for inducing seedlessness in grape variety ARI 516. Int J Minor Fruits Me Aromat Plants 6(2):67–71

    Google Scholar 

  • Upadhyaya HD, Gowda CLL, Sastry DVSSR (2008) Plant genetic resources management: collection, characterization, conservation and utilization. J SAT Agric Res 6

    Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cells 8(11):1386. https://doi.org/10.3390/cells8111386

    Article  CAS  Google Scholar 

  • Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A (2019) Mutagenesis in rice: the basis for breeding a new super plant. Front Plant Sci 8:1326. https://doi.org/10.3389/fpls.2019.01326

    Article  Google Scholar 

  • Vu NH, Subuyuj GA, Crisostomo RV, Skovran E (2021) Transposon mutagenesis for methylotrophic bacteria using Methylorubrum extorquens AM1 as a model system. Methods Enzym 650:159–184

    Google Scholar 

  • Wang X, Wang A, Li Y, Xu Y, Wei Q, Wang J, Lin F, Gong D, Liu F, Wang Y, Peng L (2021) Corrigendum: a novel banana mutant “RF 1” (Musa spp. ABB, Pisang Awak Subgroup) for improved agronomic traits and enhanced cold tolerance and disease resistance. Front Plant Sci 12:796904. https://doi.org/10.3389/fpls.2021.796904

  • Wilkes G (1991) In situ conservation of agricultural systems. In: Oldfield M, Alcorn J (eds) Biodiversity; culture, conservation and eco development. West View Press, Boulder, CO, USA, pp 86–101

    Google Scholar 

  • Yan Z, Appiano M, van Tuinen A, Meijer-Dekens F, Schipper D, Gao D, Huibers R, Visser RGF, Bai Y, Wolters AA (2021) Discovery and characterization of a novel tomato mlo mutant from an EMS mutagenized Micro-Tom population. Genes (basel) 12(5):719. https://doi.org/10.3390/genes12050719

    Article  CAS  Google Scholar 

  • Wu J-H, Ferguson AR, Murray BG (2011) Manipulation of ploidy for kiwifruit breeding: in vitro chromosome doubling in diploid Actinidia chinensis Planch. Plant Cell Tissue Organ Cult 106:503–511

    Article  CAS  Google Scholar 

  • Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J (2012) Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109(1):169–179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Made Pharmawati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pharmawati, M. (2024). Application of Mutagenesis in Food Production and Sustainable Development. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_1

Download citation

Publish with us

Policies and ethics