Skip to main content

A Modified Rotating-Finger Test Aiming to Quantify Refractory Wear Based on Fundamental Equations Governing Refractory Dissolution and Erosion

  • Conference paper
  • First Online:
Advances in Pyrometallurgy (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 416 Accesses

Abstract

Design of wear-resistant refractories necessitates an in-depth understanding and accurate quantification of the continuous wear. However, the experimental methods reported in the literature are mostly phenomenological and unable to reveal the physicochemical background of continuous wear. Main goals of this work are scientific investigation of continuous refractory wear and acquisition of data for quantitative simulation of continuous wear to design wear-resistant refractories. A modified rotating-finger test (RFT) device was equipped with high-resolution laser to scan the sample surface for dimension measurement. Generally, refractory dissolution in molten slag is controlled by diffusion through a boundary layer and diffusivity is the most important parameter to quantify dissolution. The data obtained from modified RFT studies were applied to accurately determine effective binary diffusivity using simulation method or mass transfer equation. Also, results of erosion studies were applied for inverse calculation of erosion parameters. Continuous wear of alumina in silicate slag will be exemplified here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynaert C, Sniezek E, Jacek S (2020) Corrosion tests for refractory materials intended for the steel industry—a review. Ceram Silikaty 64:278–288. https://doi.org/10.13168/cs.2020.0017

  2. Harmuth H, Vollmann S (2014) Refractory corrosion by dissolution in slags—challenges and trends of present fundamental research. Iron Steel Rev 58:157–170

    Google Scholar 

  3. Burhanuddin GJ, Harmuth H, Vollmann S (2022) Application of an improved testing device for the study of alumina dissolution in silicate slag. J Eur Ceram Soc 42:3652–3659. https://doi.org/10.1016/j.jeurceramsoc.2022.02.056

    Article  CAS  Google Scholar 

  4. Burhanuddin HH, Vollmann S (2022) Quantification of magnesia dissolution in silicate melts and diffusivity determination using rotating finger test. Appl Sci 12:12791. https://doi.org/10.3390/app122412791

    Article  CAS  Google Scholar 

  5. Amini SH, Brungs MP, Jahanshani S, Ostrovski O (2006) Effects of additives and temperature on dissolution rate and diffusivity of lime in Al2O3−CaO−SiO2 based slags. Metall Mater Trans B 37:773–780. https://doi.org/10.1007/s11663-006-0059-y

    Article  Google Scholar 

  6. Deng T, Glaser B, Sichen D (2012) Experimental design for the mechanism study of lime dissolution in liquid slag. Steel Res Int 83:259–268. https://doi.org/10.1002/srin.201100258

    Article  CAS  Google Scholar 

  7. Cooper AR, Kingery WD (1964) Dissolution in ceramic systems: I, Molecular diffusion, natural convection, and forced convection studies of sapphire dissolution in calcium aluminum silicate. J Am Ceram Soc 47:37–43. https://doi.org/10.1111/j.1151-2916.1964.tb14638.x

    Article  CAS  Google Scholar 

  8. Goriupp J, Rief A, Schenk J (2012) Quantifying of a dynamic refractory wear test setup for MgO-C products. BHM Berg- Huettenmaenn Monatsh 157:340–344. https://doi.org/10.1007/s00501-012-0028-5

    Article  CAS  Google Scholar 

  9. Liang Y, Huang A, Zhu X et al (2015) Dynamic slag/refractory interaction of lightweight Al2O3–MgO castable for refining ladle. Ceram Int 41:8149–8154. https://doi.org/10.1016/j.ceramint.2015.03.026

    Article  CAS  Google Scholar 

  10. Guo M, Jones PT, Parada S et al (2006) Degradation mechanisms of magnesia-chromite refractories by high-alumina stainless steel slags under vacuum conditions. J Eur Ceram Soc 26:3831–3843. https://doi.org/10.1016/j.jeurceramsoc.2005.12.025

    Article  CAS  Google Scholar 

  11. Um H, Lee K, Kim K-Y et al (2014) Effect of carbon content of ferromanganese alloy on corrosion behaviour of MgO–C refractory. Ironmak Steelmak 41:31–37. https://doi.org/10.1179/1743281212Y.0000000098

    Article  CAS  Google Scholar 

  12. Bui AH, Park SC, Chung IS, Lee HG (2006) Dissolution behavior of zirconia-refractories during continuous casting of steel. Met Mater Int 12:435–440. https://doi.org/10.1007/BF03027711

    Article  CAS  Google Scholar 

  13. Um H, Lee K, Choi J, Chung Y (2012) Corrosion behavior of MgO–C refractory in ferromanganese slags. ISIJ Int 52:62–67. https://doi.org/10.2355/isijinternational.52.62

    Article  CAS  Google Scholar 

  14. Jansson S, Brabie V, Jonsson P (2005) Corrosion mechanism and kinetic behaviour of MgO-C refractory material in contact with CaO−Al2O3−SiO2−MgO slag. Scand J Metall 34:283–292. https://doi.org/10.1111/j.1600-0692.2005.00748.x

    Article  CAS  Google Scholar 

  15. Jeon J, Kang Y, Park JH, Chung Y (2017) Corrosion-erosion behavior of MgAl2O4 spinel refractory in contact with high MnO slag. Ceram Int 43:15074–15079. https://doi.org/10.1016/j.ceramint.2017.08.034

    Article  CAS  Google Scholar 

  16. Zuo H, Wang C, Liu Y (2017) Dissolution behavior of a novel Al2O3-SiC-SiO2-C composite refractory in blast furnace slag. Ceram Int 43:7080–7087. https://doi.org/10.1016/j.ceramint.2017.02.138

    Article  CAS  Google Scholar 

  17. Jiao K, Fan X, Zhang J et al (2018) Corrosion behavior of alumina-carbon composite brick in typical blast furnace slag and iron. Ceram Int 44:19981–19988. https://doi.org/10.1016/j.ceramint.2018.07.265

    Article  CAS  Google Scholar 

  18. Hirata T, Morimoto T, Ohta S, Uchida N (2003) Improvement of the corrosion resistance of alumina-chromia ceramic materials in molten slag. J Eur Ceram Soc 23:2089–2096. https://doi.org/10.1016/S0955-2219(03)00023-2

    Article  CAS  Google Scholar 

  19. Yu X, Pomfret RJ, Coley KS (1997) Dissolution of alumina in mold fluxes. Metall Mater Trans B 28:275–279. https://doi.org/10.1007/s11663-997-0094-3

    Article  Google Scholar 

  20. Nightingale SA, Monaghan BJ, Brooks GA (2005) Degradation of MgO refractory in CaO−SiO2−MgO−FeOx and CaO−SiO2−Al2O3−MgO−FeOx slags under forced convection. Metall Mater Trans B 36:453–461. https://doi.org/10.1007/s11663-005-0036-x

    Article  Google Scholar 

  21. Aneziris C, Pfaff E, Maier H (2000) Corrosion mechanisms of low porosity ZrO2 based materials during near net shape steel casting. J Eur Ceram Soc 20:159–168. https://doi.org/10.1016/S0955-2219(99)00149-1

    Article  CAS  Google Scholar 

  22. Chen L, Guo M, Shi H et al (2016) Effect of ZnO level in secondary copper smelting slags on slag/magnesia-chromite refractory interactions. J Eur Ceram Soc 36:1821–1828. https://doi.org/10.1016/j.jeurceramsoc.2016.02.004

    Article  CAS  Google Scholar 

  23. Guo M, Parada S, Jones PT et al (2009) Interaction of Al2O3-rich slag with MgO-C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface. J Eur Ceram Soc 29:1053–1060. https://doi.org/10.1016/j.jeurceramsoc.2008.07.063

    Article  CAS  Google Scholar 

  24. Banda WK, Steenkamp JD, Matinde E (2020) An investigation into the wear mechanisms of carbon- and silicon carbide-based refractory materials by silicomanganese alloy. J South African Inst Min Metall 120:333–344. https://doi.org/10.17159/2411-9717/959/2020

  25. Jansson S, Brabie V, Jönsson P (2008) Corrosion mechanism of commercial doloma refractories in contact with CaO–Al2O3–SiO2–MgO slag. Ironmak Steelmak 35:99–107. https://doi.org/10.1179/030192307X231595

    Article  CAS  Google Scholar 

  26. Bui AH, Ha HM, Chung IS, Lee HG (2005) Dissolution kinetics of alumina into mold fluxes for continuous steel casting. ISIJ Int 45:1856–1863. https://doi.org/10.2355/isijinternational.45.1856

    Article  CAS  Google Scholar 

  27. Harmuth H, Burhanuddin (2022) Evaluation of CLSM measurements for dissolution studies—a case study investigating alumina dissolution in a silicate slag. Ceram Int 48:28174–28180. https://doi.org/10.1016/j.ceramint.2022.06.120

  28. Calvo WA, Pena P, Tomba Martinez AG (2019) Post-mortem analysis of alumina-magnesia-carbon refractory bricks used in steelmaking ladles. Ceram Int 45:185–196. https://doi.org/10.1016/j.ceramint.2018.09.150

    Article  CAS  Google Scholar 

  29. Liu J, Guo M, Jones PT et al (2007) In situ observation of the direct and indirect dissolution of MgO particles in CaO−Al2O3−SiO2-based slags. J Eur Ceram Soc 27:1961–1972. https://doi.org/10.1016/j.jeurceramsoc.2006.05.107

    Article  CAS  Google Scholar 

  30. Verhaeghe F, Liu J, Guo M et al (2007) Dissolution and diffusion behavior of Al2O3 in a CaO–Al2O3–SiO2 liquid: An experimental-numerical approach. Appl Phys Lett 91:124104. https://doi.org/10.1063/1.2786854

    Article  CAS  Google Scholar 

  31. Guarco J, Burhanuddin VS, Harmuth H (2022) Method for determination of effective binary diffusivities in dissolution of dense ceramic materials. Ceram Int 48:7456–7463. https://doi.org/10.1016/j.ceramint.2021.11.264

    Article  CAS  Google Scholar 

  32. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hal, Englewood Cliffs, N. J.,l

    Google Scholar 

  33. Cochran WG (1934) The flow due to a rotating disc. Math Proc Cambridge Philos Soc 30:365–375. https://doi.org/10.1017/S0305004100012561

    Article  Google Scholar 

  34. Eisenberg M, Tobias CW, Wilke CR (1954) Ionic mass transfer and concentration polarization at rotating electrodes. J Electrochem Soc 101:306. https://doi.org/10.1149/1.2781252

    Article  CAS  Google Scholar 

  35. Kosaka M, Minowa S (1966) Mass-transfer from solid metal cylinder into liquid metal. Tetsu-to-Hagane 52:1748–1762. https://doi.org/10.2355/tetsutohagane1955.52.12_1748

    Article  CAS  Google Scholar 

  36. Tachibana F, Fukui S (1964) Convective heat transfer of the rotational and axial flow between two concentric cylinders. Bull JSME 7:385–391. https://doi.org/10.1299/jsme1958.7.385

    Article  Google Scholar 

  37. Guarco J, Burhanuddin VS, Harmuth H (2022) Sherwood correlation for finger-test experiments. Results Eng 15:100610. https://doi.org/10.1016/j.rineng.2022.100610

    Article  CAS  Google Scholar 

  38. Guarco J, Vollmann S, Harmuth H, Burhanuddin (2022) Method for inverse calculation of erosion parameters in slag-refractory systems. Mater Today Commun 33:1–10.https://doi.org/10.1016/j.mtcomm.2022.104736

  39. Xin J, Gan L, Jiao L, Lai C (2017) Accurate density calculation for molten slags in SiO2−Al2O3−CaO−MgO systems. ISIJ Int 57:1340–1349. https://doi.org/10.2355/isijinternational.ISIJINT-2017-070

    Article  CAS  Google Scholar 

  40. Kircher V, Burhanuddin HH (2021) Design, operation and evaluation of an improved refractory wear testing technique. Measurement 178:109429. https://doi.org/10.1016/j.measurement.2021.109429

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project No. 859480). This program is supported by the Austrian Federal Ministries for Transport, Innovation, and Technology (BMVIT) and the Digital and Economic Affairs (BMDW), represented by the Austrian Research Funding Association (FFG), and the federal states of Styria, Upper Austria, and Tyrol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhanuddin Burhanuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burhanuddin, B., Harmuth, H. (2024). A Modified Rotating-Finger Test Aiming to Quantify Refractory Wear Based on Fundamental Equations Governing Refractory Dissolution and Erosion. In: Alvear Flores, G.R.F., et al. Advances in Pyrometallurgy. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50176-0_9

Download citation

Publish with us

Policies and ethics