Skip to main content

Printable Thermoelectric Device for Low Temperature Energy Harvesting

  • Conference paper
  • First Online:
Proceedings of SIE 2023 (SIE 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1113))

Included in the following conference series:

  • 288 Accesses

Abstract

Thermoelectric (TE) devices and thermoelectro-galvanic (TEG) cells harvest energy by converting waste-heat (dissipative form of energy) into electrical energy (precious form with conveyable features). The combination of features like processability, flexibility, lightweight, nontoxicity, low thermal conductivity and high chemical stability in organic electric conductors make them novel palatable materials for thermal energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mardi, S.: Marco risi ambrogioni and andrea reale, developing printable thermoelectric materials based on graphene nanoplatelet/ethyl cellulose nanocomposites. Mater. Res. Express 7, 085101 (2020)

    Article  Google Scholar 

  2. Mardi, S., Cataldi, P., Athanassiou, A., Reale, A.: 3D cellulose fiber networks modified by PEDOT:PSS/graphene nanoplatelets for thermoelectric applications. Appl. Phys. Lett. 120, 033102 (2022)

    Article  Google Scholar 

  3. Mardi, S., et al.: Enhanced Thermoelectric Properties of Poly(3-hexylthiophene) through the Incorporation of Aligned Carbon Nanotube Forest and Chemical Treatments. American Chemical Society – ACS Omega 6, 1073–1082 (2021)

    Google Scholar 

  4. Mardi, S., Pea, M., Notargiacomo, A.: Narges Yaghoobi Nia, Aldo Di Carlo and Andrea Reale, The Molecular Weight Dependence of Thermoelectric Properties of Poly (3-Hexylthiophene). Materials 13, 1404 (2020)

    Article  Google Scholar 

  5. ACS Appl. Energy Mater. 2022, 5, 2130; Nano Energy 2019, 57, 473; Nano Energy 2022, 93, 106795

    Google Scholar 

  6. Adv. Funct. Mater. 2012, 22, 477; Chem. Commun. 2011, 47, 6260; J. Electrochem. Soc. 1995, 142, 3985; Faraday Discuss. 2016,190, 205

    Google Scholar 

  7. J. Electron. Mater. 2016, 45, 3383

    Google Scholar 

  8. J. Mater. Chem. A, 2022, Advance Article (doi: https://doi.org/10.1039/D2TA00025C); ISCIENCE 2022, 24, 103466

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Reale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reale, A., Vesce, L., Di Carlo, A., Marchini, E., Carli, S., Caramori, S. (2024). Printable Thermoelectric Device for Low Temperature Energy Harvesting. In: Ciofi, C., Limiti, E. (eds) Proceedings of SIE 2023. SIE 2023. Lecture Notes in Electrical Engineering, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-48711-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48711-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48710-1

  • Online ISBN: 978-3-031-48711-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics