Skip to main content

Zellulose

  • Chapter
  • First Online:
Aquatische Biopolymere
  • 177 Accesses

Zusammenfassung

Das häufigste Polymer auf der Erde ist auch in der aquatischen Umwelt vorhanden, produziert von Wasserpflanzen, Algen und Zellulose produzierenden Bakterien. Zellulose kann in verschiedene Formen wie Zellulose-Nanofasern und Methylzellulose modifiziert werden und findet vielfältige Anwendungen in verschiedenen Industrien, einschließlich Textilien, Papier und Energie. Die wirtschaftliche Produktion von Bioethanol aus zellulosehaltiger Biomasse ist aufgrund der stabilen Struktur der Zellulose, die sie weniger anfällig für Hydrolyse macht, begrenzt. Zellulose aus aquatischer Biomasse kann jedoch anderen Industrien wie der Textilindustrie dienen, wo die einzigartige Chemie der aus Wasser gewonnenen Zellulose einige wünschenswerte Eigenschaften hat. Die Extraktion von Zellulose aus Biomasse reduziert das in die Umwelt freigesetzte Methan aus dem Abbau von toter Wasserpflanzen- und Algenbiomasse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aizenshtein EM (2004) World production of textile raw material. Fibre Chem 36(1):3–7

    Article  Google Scholar 

  • Albrecht W (2004) Regenerated cellulose in chapter „Cellulose“. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a05_375.pub2

  • Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V (2012) Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int J Phytorem 14(4):374–387

    Article  CAS  Google Scholar 

  • Bayrakci AG, Kocar G (2014) Second-generation bioethanol production from water hyacinth and duckweed in Izmir: a case study. Renew Sustain Energy Rev 30:306–316

    Article  CAS  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Article  CAS  PubMed  Google Scholar 

  • Brown RM, Saxena IM Jr (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38(1–2):57–67

    Article  CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H (2012) Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 5:3019–3032

    Article  CAS  Google Scholar 

  • Chen WY, Lee HV, Juan JC, Phang S (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohyd Polym 51:1210–1219

    Article  Google Scholar 

  • FAO (2011) A summary of the world apparel fibre consumption survey 2005–2008. International Cotton Advisory Committee

    Google Scholar 

  • FAO (2017) Pulp and paper capacities. Rome, Italy. ISSN 0255-7665, ISBN 978-92-5-009846-3

    Google Scholar 

  • Fernandez Diniz JM, Gil MH, Castro JAAM (2004) Hornification – its origin and interpretation in wood pulps. Wood Sci Technol 37:489–510

    Article  Google Scholar 

  • Fusi A, Bacenetti J, Gonzalez-Garcia S, Vercesi A, Bocchi S, Fiala M (2014) Environmental profile of paddy rice cultivation with different straw management. Sci Total Environ 494–495:119–128

    Article  PubMed  Google Scholar 

  • Gao H, Duan B, Lu A, Deng H, Du Y, Shi X, Zhang L (2018) Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocolloids 79:473–481

    Article  CAS  Google Scholar 

  • Hanhikoski S, Niemela K, Vuorinen T (2019) Biorefining of Scots pine using neutral sodium sulphite pulping: investigation of fibre and spent liquor compositions. Ind Crops Prod 129:135–141

    Article  CAS  Google Scholar 

  • Hasan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solution by water hyacinth (Eichhornia crassipes). Bioresour Technol 98:918–928

    Article  CAS  PubMed  Google Scholar 

  • Heilig G (1994) The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Popul Environ 16(2):109–137

    Article  Google Scholar 

  • Hon (1994) Cellulose: a random walk along the historical path. Cellulose 1(1):1–25

    Article  CAS  Google Scholar 

  • Istirokhatun T, Rokhati N, Rachmawaty R, Meriyani M, Priyanto S, Susanto H (2015) Cellulose isolation from tropical water hyacinth for membrane preparation. Procedia Environ Sci 23:274–281

    Article  CAS  Google Scholar 

  • Jaurez-Luna GN, Favela-Torres E, Quevedo IR, Batina N (2019) Enzymatically assisted isolation of high-quality cellulose nanoparticles from water hyacinth stems. Carbohyd Polym 220:110–117

    Article  Google Scholar 

  • Johnson M, Shivkumar SJ (2004) Filamentous green algae additions to isocyanate based foams. J Appl Polym Sci 93(5):2469–2477

    Article  CAS  Google Scholar 

  • Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23(5):4358–4369

    Article  CAS  Google Scholar 

  • Konda M, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An investigation on the economic feasibility of Macroalgae as a potential feedstock for biorefineries. Bioenergy Res 8:1046–1056

    Article  Google Scholar 

  • Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160

    Article  CAS  Google Scholar 

  • Lahnalammi A, Sixta H, Jamsa-Jounela S (2018) Control strategy scheme for the prehydrolysis Kraft process. Comput Aided Chem Eng 44:643–648

    Article  CAS  Google Scholar 

  • Lee H, Kim K, Mun SC, Chang YK, Choi SQ (2018) A method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285

    Article  CAS  Google Scholar 

  • Lenzing AG (2006) Sustainability in the Lenzing Group. Lenzing AG, Lenzing. http://www.lenzing.com/sites/nh/english/e_index.html

  • Li W, Khalid H, Zhu Z, Zhang R, Liu G, Chen C, Thorin E (2018) Methane production through anaerobic digestion: participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energy 226:1219–1228

    Article  CAS  Google Scholar 

  • Ma S, Sun X, Fand C, He X, Han L, Huang G (2018) Exploring the mechanisms of decreased methane during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane. Waste Manag 78:393–400

    Article  CAS  PubMed  Google Scholar 

  • Martinez de Yuso A, Izquierdo MT, Rubio B, Carrot PJM (2013) Adsorption of toluene and toluene-water vapor mixture on almond shell based activated carbon. Adsorption 19:1137–1148

    Article  CAS  Google Scholar 

  • Mihranyan A (2010) Cellulose from Cladophorales green algae: from environmental problems to high-tech composite materials. J Appl Polym Sci 119:2449–2460

    Article  Google Scholar 

  • Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    Article  CAS  PubMed  Google Scholar 

  • Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9(221):1–17

    Google Scholar 

  • Mitsuo Y, Eisuke Y (1996) (to Mitsubishi Paper Mills). Jpn Pat 08-229318

    Google Scholar 

  • Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohyd Polym 98(1):290–294

    Article  CAS  Google Scholar 

  • Munoz C, Hidalgo C, Zapala M, Jeison D, Riquelme C, Rivas M (2014) Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl Environ Microbiol 80(14):4199–4206

    Article  PubMed  PubMed Central  Google Scholar 

  • Olatunji O, Olsson RT (2015) Microneedles from fishscale-nanocellulose blends using low temperature mechanical press method. Pharmaceutics 7:363–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olatunji O, Olsson RT (2016) Processing and characterization of natural polymers. In: Natural polymers, industry techniques and applications. Springer, Switzerland. ISBN 978-3-319-26412-7

    Google Scholar 

  • Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18:447–472

    Article  Google Scholar 

  • Polprasert C, Kongsricharoern N, Kanjana Prapin W (1994) Production of feed and fertilizer from water hyacinth plants in the tropics. Waste Manag Res 12(1):3–11

    Article  Google Scholar 

  • Russel JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67(2):183–197

    Article  Google Scholar 

  • Sarkar M, Rahman AKML, Bhoumik NC (2017) Remediation of chromium and copper on water hyacinth (E.crassipes) shoot powder. Water Resour Ind 17:1–6

    Article  Google Scholar 

  • Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibres. Lenzinger Ber 88:1–59

    CAS  Google Scholar 

  • Shen J, Qian X (2012) Addressing the water footprint concept: a demonstrable strategy for papermaking industry. BioResources 7(3):2707–2710

    Article  CAS  Google Scholar 

  • Shen XL, Xia LM (2003) Studies on immobilized cellobiase. Chin J Biotechnol 19(2):236–239

    CAS  Google Scholar 

  • Shen L, Worrell E, Patel KM (2010) Environmental impact assessment of man-made cellulose fibres. Resour Conserv Recycl 55(2):260–274

    Article  Google Scholar 

  • Siddhanta AK, Chhatbar MU, Mehta GK, Sanandiya ND, Kumar S, Oza MD, Prasad K, Meena R (2011) The cellulose contents of Indian seaweeds. J Appl Phycol 23:919–923

    Article  Google Scholar 

  • Smith J, Connell P, Evans RH, Gellene AG, Howard MDA, Jones BH, Kaveggia Palmer L, Schnetzer A, Seegers BN, Seubert EL, Tatters AO, Caron DA (2018) A decade and a half of pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful Algae. https://doi.org/10.1016/j.hal.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  • Steen DA, Gibbs JP, Buhlmann KA, Carr JL (2012) Terrestrial habitat requirements of nesting freshwater turtles. Biol Conserv 150(1):121–128

    Article  Google Scholar 

  • Stromme M, Mihranyan A, Ek R (2002) What to do with all these algae? Mater Lett 57:569–572

    Article  Google Scholar 

  • Thiripura M, Ramesh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. J Carbohyd Polym 87:1701–1705

    Article  Google Scholar 

  • Vulimiri SV, Pratt MM, Kulkarni S, Beedanagari S, Mahadevan B (2017) Reproductive and developmental toxicity of solvents and gases, chap 21. In: Reproductive and developmental toxicology, 2. Aufl. Academic Press, S 379–396

    Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Barbora L, Bora D, Mitra S, Rangan L, Mahanta P (2017) An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. Int Biodeterior Biodegradation 119:253–259

    Article  CAS  Google Scholar 

  • Yaich H, Garnaa H, Besbesa S, Paquot M, Beckerc C, Attia H (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128(4):895–901

    Article  CAS  Google Scholar 

  • Yoon JJ, Kim YJ, Kim SH, Ryu HJ, Choi JY, Kim GS, Shin MK (2010) Production of polysaccharides and corresponding sugars from red seaweed. Adv Mater Res 93–94:463–466

    Article  Google Scholar 

  • Zhao X, Moates GK, Wellner N, Collins SR, Coleman MJ, Waldron KW (2014) Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohyd Polym 111:410–418

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2024). Zellulose. In: Aquatische Biopolymere. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-48282-3_14

Download citation

Publish with us

Policies and ethics