Skip to main content

Education and Training in MR-Based Radiation Treatment

  • Chapter
  • First Online:
A Practical Guide to MR-Linac
  • 164 Accesses

Abstract

Magnetic resonance image (MR)-guided radiotherapy (MRgRT) is a modern treatment modality in radiation oncology. This system permits to exploit MR images to guide and adapt radiotherapy treatments on a daily basis with the goal of improving treatment accuracy and reducing side effects. Considering the novelty of this treatment option, this chapter aims to introduce the technological basis of MRgRT and to provide practical suggestions for a quick and efficient start into the clinical practice. The available technologies are described, as well as the correct daily integration into a MR environment. For proper implementation of this technology, education and training components are elaborated. The actual and future issues are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landry G, Corradini S, Belka C. Magnetic resonance-guided radiation therapy: the beginning of a new era. Radiat Oncol. 2020;15:163.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Corradini S, Alongi F, Andratschke N, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14:92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014;24:196–9.

    Article  PubMed  Google Scholar 

  4. Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62(23):L41–50. Published 2017 Nov 14.

    Article  CAS  PubMed  Google Scholar 

  5. Acharya S, Fischer-Valuck BW, Kashani R, et al. Online magnetic resonance image guided adaptive radiation therapy: first clinical applications [published correction appears in Int J Radiat Oncol biol Phys. 2016 Sep 1;96(1):243]. Int J Radiat Oncol Biol Phys. 2016;94(2):394–403.

    Article  PubMed  Google Scholar 

  6. Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019;18:98–101.

    PubMed Central  PubMed  Google Scholar 

  7. Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, et al. MRI/linac integration. Radiother Oncol. 2008;86:25–9.

    Article  PubMed  Google Scholar 

  8. Raaymakers BW, Lagendijk JJ, Overweg J, et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol. 2009;54(12):N229–37.

    Article  CAS  PubMed  Google Scholar 

  9. Raaijmakers AJE, Hårdemark B, Raaymakers BW, et al. Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field. Phys Med Biol. 2007;52:7045–54.

    Article  CAS  PubMed  Google Scholar 

  10. Woodings SJ, Bluemink JJ, de Vries JHW, et al. Beam characterisation of the 1.5 T MRI-linac. Phys Med Biol. 2018;63:85015.

    Article  CAS  Google Scholar 

  11. Park JM, Park S-Y, Wu H-G, Kim J. Commissioning experience of tri-Cobalt-60 MRI-guided radiation therapy system. Prog Med Phys. 2015;26:193.

    Article  Google Scholar 

  12. Winkel D, Bol GH, Kroon PS, van Asselen B, et al. Adaptive radiotherapy: the Elekta Unity MR-Linac concept. Clin Transl Radiat Oncol. 2019;18:54–9.

    PubMed Central  PubMed  Google Scholar 

  13. McNair HA, Wiseman T, Joyce E, et al. International survey; current practice in on-line adaptive radiotherapy (ART) delivered using magnetic resonance image (MRI) guidance. Tech Innov Patient Support Radiat Oncol. 2020;16:1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. McGee KP, Tyagi N, Bayouth JE, et al. Findings of the AAPM Ad Hoc committee on magnetic resonance imaging in radiation therapy: unmet needs, opportunities, and recommendations [published correction appears in Med Phys. 2023 Mar;50(3):1943]. Med Phys. 2021;48(8):4523–31.

    Article  PubMed  Google Scholar 

  15. Klüter S, Schrenk O, Renkamp CK, et al. A practical implementation of risk management for the clinical introduction of online adaptive Magnetic Resonance-guided radiotherapy. Phys Imaging Radiat Oncol. 2021;17:53–7.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Younge KC, Wang Y, Thompson J, et al. Practical implementation of failure mode and effects analysis for safety and efficiency in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2015;91:1003–8.

    Article  PubMed  Google Scholar 

  17. Huq MS, Fraass BA, Dunscombe PB, et al. A method for evaluating quality assurance needs in radiation therapy. Int J Radiat Oncol Biol Phys. 2008;71:S170–3.

    Article  PubMed  Google Scholar 

  18. Noel CE, Santanam L, Parikh PJ, et al. Process-based quality management for clinical implementation of adaptive radiotherapy. Med Phys. 2014;41:81717.

    Article  Google Scholar 

  19. Botman R, Tetar SU, Palacios MA, et al. The clinical introduction of MR-guided radiation therapy from a RTT perspective. Clin Transl Radiat Oncol. 2019;18:140–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Tanadini-Lang S, Budgell G, Bohoudi O, et al. An ESTRO-ACROP guideline on quality assurance and medical physics commissioning of online MRI guided radiotherapy systems based on a consensus expert opinion. Radiother Oncol. 2023;181:109504.

    Article  PubMed  Google Scholar 

  21. Green O, Henke LE, Parikh P, et al. Practical implications of ferromagnetic artifacts in low-field MRI-guided radiotherapy. Cureus. 2018;10:e2359.

    PubMed Central  PubMed  Google Scholar 

  22. van der Heide UA, Frantzen-Steneker M, Astreinidou E, et al. MRI basics for radiation oncologists. Clin Transl Radiat Oncol. 2019;18:74–9.

    PubMed Central  PubMed  Google Scholar 

  23. Jonsson J, Nyholm T, Söderkvist K. The rationale for MR-only treatment planning for external radiotherapy. Clin Transl Radiat Oncol. 2019;18:60–5.

    PubMed Central  PubMed  Google Scholar 

  24. Kurz C, Buizza G, Landry G, et al. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol. 2020;15:1–16.

    Article  Google Scholar 

  25. ESTRO. In-room MRI-guided RT. n.d. https://www.estro.org/Courses/In-room-MRI-guided-RT.

  26. Utrecht U. MRI in radiotherapy course. n.d. https://www.umcutrecht.nl/nl/ziekenhuis/mri-in-radiotherapy-course.

  27. Research TI of C. Magnetic resonance image guided radiotherapy (MRIgRT). n.d. http://www.icr.ac.uk/studying-and-training/opportunities-for-clinicians/radiotherapy-and-imaging-training-courses/magnetic-resonance-imageguided-radiotherapy-(mrigrt).

  28. Adair Smith G, Dunlop A, Alexander SE, Barnes H, Casey F, Chick J, Gunapala R, Herbert T, Lawes R, Mason SA, Mitchell A, Mohajer J, Murray J, Nill S, Patel P, Pathmanathan A, Sritharan K, Sundahl N, Tree AC, Westley R, Williams B, McNair HA. Evaluation of therapeutic radiographer contouring for magnetic resonance image guided online adaptive prostate radiotherapy. Radiother Oncol. 2023;180:109457.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Boldrini L, Cusumano D, Chiloiro G, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019;124:145.

    Article  PubMed  Google Scholar 

  30. Cusumano D, Boldrini L, Yadav P, et al. External validation of early regression index (ERI(TCP)) as predictor of pathologic complete response in rectal cancer using magnetic resonance-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2020;108:1347.

    Article  PubMed  Google Scholar 

  31. Bibault J-E, Xing L, Giraud P, et al. Radiomics: a primer for the radiation oncologist. Cancer Radiother. 2020;24:403–10.

    Article  PubMed  Google Scholar 

  32. Finazzi T, Haasbeek CJA, Spoelstra FOB, et al. Clinical outcomes of stereotactic MR-guided adaptive radiation therapy for high-risk lung tumors. Int J Radiat Oncol Biol Phys. 2020;107:270–8.

    Article  PubMed  Google Scholar 

  33. Finazzi T, Palacios MA, Spoelstra FOB, et al. Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors. Int J Radiat Oncol Biol Phys. 2019;104:933–41.

    Article  PubMed  Google Scholar 

  34. Finazzi T, Palacios MA, Haasbeek CJA, et al. Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors. Radiother Oncol. 2020;144:46–52.

    Article  PubMed  Google Scholar 

  35. Boldrini L, Cusumano D, Cellini F, et al. Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls. Radiat Oncol. 2019;14:71.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Winkel D, Bol GH, Werensteijn-Honingh AM, et al. Evaluation of plan adaptation strategies for stereotactic radiotherapy of lymph node oligometastases using online magnetic resonance image guidance. Phys Imaging Radiat Oncol. 2019;9:58–64.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bohoudi O, Bruynzeel AME, Senan S, et al. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother Oncol. 2017;125:439–44.

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Park JM, Choi CH, et al. Retrospective study comparing MR-guided radiation therapy (MRgRT) setup strategies for prostate treatment: repositioning vs. replanning. Radiat Oncol. 2019;14:139.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Tetar SU, Bruynzeel AME, Lagerwaard FJ, et al. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys Imaging Radiat Oncol. 2019;9:69–76.

    Article  PubMed Central  PubMed  Google Scholar 

  40. van Timmeren JE, Chamberlain M, Krayenbuehl J, et al. Treatment plan quality during online adaptive re-planning. Radiat Oncol. 2020;15:1–11.

    Google Scholar 

  41. van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, et al. MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys. 2018;102:858–66.

    Article  PubMed  Google Scholar 

  42. Green OL, Rankine LJ, Cai B, et al. First clinical implementation of real-time, real anatomy tracking and radiation beam control. Med Phys. 2018;45:3728–40.

    Article  Google Scholar 

  43. Tetar S, Bruynzeel A, Bakker R, et al. Patient reported outcome measurements on the tolerance of magnetic resonance imaging-guided radiation therapy. Cureus. 2018;10:e2236.

    PubMed Central  PubMed  Google Scholar 

  44. Klüter S, Katayama S, Spindeldreier CK, et al. First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany. Strahlenther Onkol. 2020;196:691–8.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Jackson S, Glitzner M, Tijssen RHN, Raaymakers BW. MRI B 0 homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-Linac. Phys Med Biol. 2019;64(12):12NT01.

    Article  PubMed  Google Scholar 

  46. Menten MJ, Mohajer JK, Nilawar R, et al. Automatic reconstruction of the delivered dose of the day using MR-Linac treatment log files and online MR imaging. Radiother Oncol. 2020;145:88–94.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kontaxis C, de Muinck Keizer DM, et al. Delivered dose quantification in prostate radiotherapy using online 3D cine imaging and treatment log files on a combined 1.5T magnetic resonance imaging and linear accelerator system. Phys Imaging Radiat Oncol. 2020;15:23–9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Sammet S. Magnetic resonance safety. Abdom Radiol. 2016;41:444–51.

    Article  Google Scholar 

  49. Chadderdon AL, Carns DR, Pudalov LR, et al. Underlying mechanisms of psychological interventions in magnetic resonance imaging and image-guided radiology procedures. Top Magn Reson Imaging. 2020;29:157–63.

    Article  PubMed  Google Scholar 

  50. Walworth DD. Effect of live music therapy for patients undergoing magnetic resonance imaging. J Music Ther. 2010;47:335–50.

    Article  PubMed  Google Scholar 

  51. Schellhammer F, Ostermann T, Krüger G, et al. Good scent in MRI: can scent management optimize patient tolerance? Acta Radiol. 2013;54:795–9.

    Article  PubMed  Google Scholar 

  52. Werensteijn-Honingh AM, Kroon PS, Winkel D, et al. Feasibility of stereotactic radiotherapy using a 1.5 T MR-Linac: multifraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 2019;134:50–4.

    Article  PubMed  Google Scholar 

  53. Boldrini L, Colloca GF, Villani E, et al. Magnetic resonance-guided radiotherapy feasibility in elderly cancer patients: proposal of the MASTER scoring system. Tumori. 2021;107(1):26–31.

    Article  PubMed  Google Scholar 

  54. Graves SA, Snyder JE, Boczkowski A, et al. Commissioning and performance evaluation of RadCalc for the Elekta unity MRI-linac. J Appl Clin Med Phys. 2019;20:54–62.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Corradini S, Alongi F, Andratschke N, et al. MRguidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14:1–12.

    Article  Google Scholar 

  56. Alongi F, Rigo M, Figlia V, et al. 1.5 T MR guided and daily adapted SBRT for prostate cancer: feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment. Radiat Oncol. 2020;15:69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Mazzola R, Figlia V, Rigo M, et al. Feasibility and safety of 1.5 T MR-guided and daily adapted abdominal-pelvic SBRT for elderly cancer patients: geriatric assessment tools and preliminary patientreported outcomes. J Cancer Res Clin Oncol. 2020;146:2379.

    Article  PubMed  Google Scholar 

  58. Park JM, Wu H-G, Kim HJ, et al. Comparison of treatment plans between IMRT with MR-Linac and VMAT for lung SABR. Radiat Oncol. 2019;14:105.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Henke L, Kashani R, Robinson C, et al. Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother Oncol. 2018;126:519–26.

    Article  PubMed  Google Scholar 

  60. Witt JS, Rosenberg SA, Bassetti MF. MRI-guided adaptive radiotherapy for liver tumours: visualising the future. Lancet Oncol. 2020;21:e74–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Nicosia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicosia, L., Borgese, R.F., Brown, K., Alongi, F. (2024). Education and Training in MR-Based Radiation Treatment. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics