Skip to main content

Clinical Necessity and Patient Selection in MR-Linac

  • Chapter
  • First Online:
A Practical Guide to MR-Linac
  • 128 Accesses

Abstract

Every new technology may not be best suited for a patient’s treatment, and a selection procedure is needed for the management plan. This is certainly the case with MR-Linac technology, which uses magnetic resonance (MR) images in real time to treat patients with a linear accelerator (Linac) on a single gantry. The complexity of this setup means that a lot of technical issues have to be addressed. It has been established that only about one-third of the cancer patient population may be suitable for MR-Linac. In this chapter, we will explore the clinical necessity of MR-Linac and examine the broad selection criteria that should be used for approving patient treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Supanich M, Siewerdsen J, Fahrig R, Farahani K, Gang GJ, Helm P, et al. AAPM Task Group Report 238: 3D C-arms with volumetric imaging capability. Med Phys. 2023;50(8):e904−945.

    Google Scholar 

  2. Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, et al. Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM Therapy Physics Committee Task Group 180. Med Phys. 2018;45(5):e84–99.

    Article  PubMed  Google Scholar 

  3. Yan D, Georg D. Adaptive radiation therapy. Z Med Phys. 2018;28(3):173–4.

    Article  PubMed  Google Scholar 

  4. Murphy MJ, Balter J, Balter S, BenComo JA Jr, Das IJ, Jiang SB, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041–63.

    Article  PubMed  Google Scholar 

  5. Jaffray DA, Das S, Jacobs PM, Jeraj R, Lambin P. How advances in imaging will affect precision radiation oncology. Int J Radiat Oncol Biol Phys. 2018;101(2):292–8.

    Article  PubMed  Google Scholar 

  6. Ling CC, Yorke E, Fuks Z. From IMRT to IGRT: frontierland or neverland? Radiother Oncol. 2006;78(2):119–22.

    Article  PubMed  Google Scholar 

  7. Ghilezan M, Yan D, Liang J, Jaffray D, Wong J, Martinez A. Online image-guided intensity-modulated radiotherapy for prostate cancer: how much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys. 2004;60(5):1602–10.

    Article  PubMed  Google Scholar 

  8. van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol. 2004;14(1):52–64.

    Article  PubMed  Google Scholar 

  9. Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys. 2001;28(2):220–31.

    Article  CAS  PubMed  Google Scholar 

  10. Mackie TR, Kapatoes J, Ruchala K, Lu W, Wu C, Olivera G, et al. Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56(1):89–105.

    Article  PubMed  Google Scholar 

  11. Shirato H, Seppenwoolde Y, Kitamura K, Onimura R, Shimizu S. Intrafractional tumor motion: lung and liver. Semin Radiat Oncol. 2004;14(1):10–8.

    Article  PubMed  Google Scholar 

  12. Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51(5):1410–21.

    Article  CAS  PubMed  Google Scholar 

  13. Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44(4):911–9.

    Article  CAS  PubMed  Google Scholar 

  14. Xing L, Thorndyke B, Schreibmann E, Yang Y, Li TF, Kim GY, et al. Overview of image-guided radiation therapy. Med Dosim. 2006;31(2):91–112.

    Article  PubMed  Google Scholar 

  15. Hamilton RJ, Sweeney PJ, Pelizzari CA, Yetkin FZ, Holman BL, Garada B, et al. Functional imaging in treatment planning of brain lesions. Int J Radiat Oncol Biol Phys. 1997;37(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  16. Njeh CF. Tumor delineation: the weakest link in the search for accuracy in radiotherapy. J Med Phys. 2008;33(4):136–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Weiss E, Hess CF. The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol. 2003;179(1):21–30.

    Article  PubMed  Google Scholar 

  18. Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol. 2005;15(3):136–45.

    Article  PubMed  Google Scholar 

  19. Vorwerk H, Beckmann G, Bremer M, Degen M, Dietl B, Fietkau R, et al. The delineation of target volumes for radiotherapy of lung cancer patients. Radiother Oncol. 2009;91(3):455–60.

    Article  PubMed  Google Scholar 

  20. van Mourik AM, Elkhuizen PH, Minkema D, Duppen JC, Dutch Young Boost Study Group, van Vliet-Vroegindeweij C. Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines. Radiother Oncol. 2010;94(3):286–91.

    Article  PubMed  Google Scholar 

  21. Chen AM, Farwell DG, Luu Q, Chen LM, Vijayakumar S, Purdy JA. Marginal misses after postoperative intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2011;80(5):1423–9.

    Article  PubMed  Google Scholar 

  22. Jolicoeur M, Racine ML, Trop I, Hathout L, Nguyen D, Derashodian T, et al. Localization of the surgical bed using supine magnetic resonance and computed tomography scan fusion for planification of breast interstitial brachytherapy. Radiother Oncol. 2011;100(3):480–4.

    Article  PubMed  Google Scholar 

  23. Chang EL, Akyurek S, Avalos T, Rebueno N, Spicer C, Garcia J, et al. Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int J Radiat Oncol Biol Phys. 2007;68(1):144–50.

    Article  PubMed  Google Scholar 

  24. Just M, Rosler HP, Higer HP, Kutzner J, Thelen M. MRI-assisted radiation therapy planning of brain tumors—clinical experiences in 17 patients. Magn Reson Imaging. 1991;9(2):173–7.

    Article  CAS  PubMed  Google Scholar 

  25. Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol. 2006;79 Spec No 1:S2–15.

    Article  CAS  PubMed  Google Scholar 

  26. Mardor Y, Pfeffer R, Spiegelmann R, Roth Y, Maier SE, Nissim O, et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol. 2003;21(6):1094–100.

    Article  PubMed  Google Scholar 

  27. Garcia-Alvarez R, Liney GP, Beavis AW. Repeatability of functional MRI for conformal avoidance radiotherapy planning. J Magn Reson Imaging. 2006;23(2):108–14.

    Article  PubMed  Google Scholar 

  28. Nguyen PL, Aizer A, Assimos DG, D’Amico AV, Frank SJ, Gottschalk AR, et al. ACR appropriateness criteria(R) definitive external-beam irradiation in stage T1 and T2 prostate cancer. Am J Clin Oncol. 2014;37(3):278–88.

    Article  PubMed  Google Scholar 

  29. Debois M, Oyen R, Maes F, Verswijvel G, Gatti G, Bosmans H, et al. The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys. 1999;45(4):857–65.

    Article  CAS  PubMed  Google Scholar 

  30. Chen ME, Troncoso P, Johnston DA, Tang K, Babaian RJ. Optimization of prostate biopsy strategy using computer based analysis. J Urol. 1997;158(6):2168–75.

    Article  CAS  PubMed  Google Scholar 

  31. Haider MA, Chung P, Sweet J, Toi A, Jhaveri K, Menard C, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(2):425–30.

    Article  PubMed  Google Scholar 

  32. McLaughlin PW, Narayana V, Meirovitz A, Troyer S, Roberson PL, Gonda R Jr, et al. Vessel-sparing prostate radiotherapy: dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys. 2005;61(1):20–31.

    Article  PubMed  Google Scholar 

  33. Potter R, Dimopoulos J, Georg P, Lang S, Waldhausl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55.

    Article  PubMed  Google Scholar 

  34. Steenbakkers RJ, Deurloo KE, Nowak PJ, Lebesque JV, van Herk M, Rasch CR. Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2003;57(5):1269–79.

    Article  PubMed  Google Scholar 

  35. Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83(3):e353–62.

    Article  PubMed Central  PubMed  Google Scholar 

  36. McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol. 2008;18(5):1058–64.

    Article  PubMed  Google Scholar 

  37. Mayr NA, Wang JZ, Zhang D, Grecula JC, Lo SS, Jaroura D, et al. Longitudinal changes in tumor perfusion pattern during the radiation therapy course and its clinical impact in cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77(2):502–8.

    Article  PubMed  Google Scholar 

  38. Ulin K, Urie MM, Cherlow JM. Results of a multi-institutional benchmark test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys. 2010;77(5):1584–9.

    Article  PubMed Central  PubMed  Google Scholar 

  39. van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med Phys. 1994;21(7):1163–78.

    Article  PubMed  Google Scholar 

  40. Devic S. MRI simulation for radiotherapy treatment planning. Med Phys. 2012;39(11):6701–11.

    Article  PubMed  Google Scholar 

  41. Kapanen M, Collan J, Beule A, Seppala T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med. 2013;70(1):127–35.

    Article  PubMed  Google Scholar 

  42. Paulson ES, Erickson B, Schultz C, Allen LX. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys. 2015;42(1):28–39.

    Article  PubMed  Google Scholar 

  43. Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D, Murray L, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(1):199–217.

    Article  PubMed  Google Scholar 

  44. Khoo VS, Padhani AR, Tanner SF, Finnigan DJ, Leach MO, Dearnaley DP. Comparison of MRI with CT for the radiotherapy planning of prostate cancer: a feasibility study. Br J Radiol. 1999;72(858):590–7.

    Article  CAS  PubMed  Google Scholar 

  45. Tyagi N, Fontenla S, Zelefsky M, Chong-Ton M, Ostergren K, Shah N, et al. Clinical workflow for MR-only simulation and planning in prostate. Radiat Oncol. 2017;12(1):119.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Miften M, Mihailidis D, Kry SF, Reft C, Esquivel C, Farr J, et al. Management of radiotherapy patients with implanted cardiac pacemakers and defibrillators: a report of the AAPM TG-203(dagger). Med Phys. 2019;46(12):e757–e88.

    Article  PubMed  Google Scholar 

  47. Marbach JR, Sontag MR, Van Dyk J, Wolbarst AB. Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine. Med Phys. 1994;21(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  48. Munn Z, Jordan Z. The effectiveness of interventions to reduce anxiety, claustrophobia, sedation and non-completion rates of patients undergoing high technology medical imaging. JBI Libr Syst Rev. 2012;10(19):1122–85.

    PubMed  Google Scholar 

  49. Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2007;116(24):2878–91.

    Article  PubMed  Google Scholar 

  50. Kusumoto FM, Schoenfeld MH, Wilkoff BL, Berul CI, Birgersdotter-Green UM, Carrillo R, et al. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm. 2017;14(12):e503–e51.

    Article  PubMed  Google Scholar 

  51. Bhandiwad AR, Cummings KW, Crowley M, Woodard PK. Cardiovascular magnetic resonance with an MR compatible pacemaker. J Cardiovasc Magn Reson. 2013;15(1):18.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Harden SP. MRI conditional pacemakers: the start of a new era. Br J Radiol. 2011;84(1005):773–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Botman R, Tetar SU, Palacios MA, Slotman BJ, Lagerwaard FJ, Bruynzeel AME. The clinical introduction of MR-guided radiation therapy from a RTT perspective. Clin Transl Radiat Oncol. 2019;18:140–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kluter S, Katayama S, Spindeldreier CK, Koerber SA, Major G, Alber M, et al. First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany. Strahlenther Onkol. 2020;196(8):691–8.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Sahin B, Zoto Mustafayev T, Gungor G, Aydin G, Yapici B, Atalar B, et al. First 500 fractions delivered with a magnetic resonance-guided radiotherapy system: initial experience. Cureus. 2019;11(12):e6457.

    PubMed Central  PubMed  Google Scholar 

  56. Wachowicz K, Stanescu T, Thomas SD, Fallone BG. Implications of tissue magnetic susceptibility-related distortion on the rotating magnet in an MR-linac design. Med Phys. 2010;37(4):1714–21.

    Article  CAS  PubMed  Google Scholar 

  57. Jackson S, Glitzner M, Tijssen RHN, Raaymakers BW. MRI B (0) homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. Phys Med Biol. 2019;64(12):12NT01.

    Article  PubMed  Google Scholar 

  58. Stanescu T, Wachowicz K, Jaffray DA. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT. Med Phys. 2012;39(12):7185–93.

    Article  CAS  PubMed  Google Scholar 

  59. Moore-Palhares D, Ho L, Lu L, Chugh B, Vesprini D, Karam I, et al. Clinical implementation of magnetic resonance imaging simulation for radiation oncology planning: 5 year experience. Radiat Oncol. 2023;18(1):27.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, P., Alongi, F., Mittal, B.B., Das, I.J. (2024). Clinical Necessity and Patient Selection in MR-Linac. In: Das, I.J., Alongi, F., Yadav, P., Mittal, B.B. (eds) A Practical Guide to MR-Linac. Springer, Cham. https://doi.org/10.1007/978-3-031-48165-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48165-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48164-2

  • Online ISBN: 978-3-031-48165-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics