Skip to main content

Adjunctive Measures: Neuromonitoring, Perfusion Monitoring, Foley

  • Chapter
  • First Online:
Lumbar Spine Access Surgery

Abstract

Intraoperative care begins prior to surgery with a detailed discussion with the anesthesia and neuromonitoring teams. Special attention should be paid to the patient’s comorbid medical conditions, and consideration should be made to institute adjunctive measures to optimize patient safety during the case.

Intraoperative multimodality neuromonitoring is employed based upon the structures at risk of injury. During anterior and lateral lumbar surgery, modalities specifically addressing the lumbar and sacral nerve roots as well as the lumbar plexus are most commonly selected. This chapter will highlight the clinical utility and limitations of somatosensory evoked potentials (SSEPs), electromyography (EMG), and motor evoked potentials (MEPs), with specific attention to anterior and lateral lumbar approaches. Cardiovascular perfusion monitoring via an arterial line is helpful for maintenance and augmentation of blood pressure. Evidence from the management of acute spinal cord injury can be applied to intraoperative care when neural structures are at risk or damaged. Foley catheterization is routinely used to monitor fluid balance during lumbar surgery. Consideration should be given to urinary catheterization depending on case type, duration, and patient risk factors for postoperative urinary retention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang R, Reddy RP, Coutinho DV, et al. Diagnostic accuracy of SSEP changes during lumbar spine surgery for predicting postoperative neurological deficit. Spine (Phila Pa 1976). 2021;46(24):E1343–52. https://doi.org/10.1097/brs.0000000000004099.

    Article  PubMed  Google Scholar 

  2. Charalampidis A, Jiang F, Wilson JRF, Badhiwala JH, Brodke DS, Fehlings MG. The use of intraoperative neurophysiological monitoring in spine surgery. Global Spine J. 2020;10(1_Suppl):104S–14S. https://doi.org/10.1177/2192568219859314.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Padberg AM, Thuet ED. Intraoperative electrophysiologic monitoring: considerations for complex spinal surgery. Neurosurg Clin N Am. 2006;17(3):205–26. https://doi.org/10.1016/j.nec.2006.05.008.

    Article  PubMed  Google Scholar 

  4. Park J-H. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases. 2015;3(9):765. https://doi.org/10.12998/wjcc.v3.i9.765.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine (Phila Pa 1976). 2009;34(14):1504–12. https://doi.org/10.1097/BRS.0b013e3181a87b66.

    Article  PubMed  Google Scholar 

  6. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27(4):1–10. https://doi.org/10.3171/2009.8.FOCUS09150.

    Article  Google Scholar 

  7. Griggs RC, Alcauskas M. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2012;79(3):292–4. https://doi.org/10.1212/WNL.0b013e3182637c24.

    Article  Google Scholar 

  8. Hadley MN, Shank CD, Rozzelle CJ, Walters BC. In reply: guidelines for the use of electrophysiological monitoring for surgery of the human spinal column and spinal cord. Clin Neurosurg. 2018;83(2):E80–1. https://doi.org/10.1093/neuros/nyy207.

    Article  Google Scholar 

  9. Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am. 2004;86(6):1248–53. https://doi.org/10.2106/00004623-200406000-00018.

    Article  PubMed  Google Scholar 

  10. Lall RR, Hauptman JS, Munoz C, et al. Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus. 2012;33(5):1–10. https://doi.org/10.3171/2012.9.FOCUS12235.

    Article  Google Scholar 

  11. Malhotra NR, Shaffrey CI. Intraoperative electrophysiological monitoring in spine surgery. Spine (Phila Pa 1976). 2010;35(25):2167–79. https://doi.org/10.1097/BRS.0b013e3181f6f0d0.

    Article  PubMed  Google Scholar 

  12. Melachuri SR, Stopera C, Melachuri MK, et al. The efficacy of somatosensory evoked potentials in evaluating new neurological deficits after spinal thoracic fusion and decompression. J Neurosurg Spine. 2020;33(1):35–40. https://doi.org/10.3171/2019.12.SPINE191157.

    Article  Google Scholar 

  13. Nuwer MR, Dawson EG, Carlson LG, Kanim LEA, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11. https://doi.org/10.1016/0013-4694(94)00235-D.

    Article  CAS  PubMed  Google Scholar 

  14. Berends HI, Journée HL, Rácz I, van Loon J, Härtl R, Spruit M. Multimodality intraoperative neuromonitoring in extreme lateral interbody fusion. Transcranial electrical stimulation as indispensable rearview. Eur Spine J. 2016;25(5):1581–6. https://doi.org/10.1007/s00586-015-4182-9.

    Article  PubMed  Google Scholar 

  15. Brau SA, Spoonamore MJ, Snyder L, et al. Nerve monitoring changes related to iliac artery compression during anterior lumbar spine surgery. Spine J. 2003;3(5):351–5. https://doi.org/10.1016/S1529-9430(03)00067-6.

    Article  PubMed  Google Scholar 

  16. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976). 2011;36(1):26–32. https://doi.org/10.1097/BRS.0b013e3181e1040a.

    Article  PubMed  Google Scholar 

  17. Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach: clinical article. J Neurosurg Spine. 2011;14(1):31–7. https://doi.org/10.3171/2010.9.SPINE09871.

    Article  PubMed  Google Scholar 

  18. Uribe JS, Isaacs RE, Youssef JA, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24:378–85. https://doi.org/10.1007/s00586-015-3871-8.

    Article  PubMed  Google Scholar 

  19. Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35(Suppl 26):368–74. https://doi.org/10.1097/BRS.0b013e3182027976.

    Article  Google Scholar 

  20. Yaylali I, Ju H, Yoo J, Ching A, Hart R. Intraoperative neurophysiological monitoring in anterior lumbar interbody fusion surgery. J Clin Neurophysiol. 2014;31(4):352–5. https://doi.org/10.1097/WNP.0000000000000073.

    Article  PubMed  Google Scholar 

  21. Jin SH, Chung CK, Kim CH, Choi YD, Kwak G, Kim BE. Multimodal intraoperative monitoring during intramedullary spinal cord tumor surgery. Acta Neurochir. 2015;157(12):2149–55. https://doi.org/10.1007/s00701-015-2598-y.

    Article  PubMed  Google Scholar 

  22. Paradiso G, Lee GYF, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine (Phila Pa 1976). 2006;31(18):2095–102. https://doi.org/10.1097/01.brs.0000231687.02271.b6.

    Article  PubMed  Google Scholar 

  23. Clements DH, Morledge DE, Martin WH, Betz RR. Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine (Phila Pa 1976). 1996;21(5):600–4. https://doi.org/10.1097/00007632-199603010-00013.

    Article  CAS  PubMed  Google Scholar 

  24. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976). 2004;29(6):677–84. https://doi.org/10.1097/01.BRS.0000115144.30607.E9.

    Article  PubMed  Google Scholar 

  25. Bose B, Sestokas AK, Schwartz DM. Neurophysiological detection of iatrogenic C-5 nerve deficit during anterior cervical spinal surgery. J Neurosurg Spine. 2007;6(5):381–5. https://doi.org/10.3171/spi.2007.6.5.381.

    Article  PubMed  Google Scholar 

  26. Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine. 2005;3(2):92–7. https://doi.org/10.3171/spi.2005.3.2.0092.

    Article  PubMed  Google Scholar 

  27. Dowlati E, Alexander H, Voyadzis JM. Vulnerability of the L5 nerve root during anterior lumbar interbody fusion at L5–S1: case series and review of the literature. Neurosurg Focus. 2020;49(3):1–9. https://doi.org/10.3171/2020.6.FOCUS20315.

    Article  Google Scholar 

  28. Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14(2):290–5. https://doi.org/10.3171/2010.10.SPINE10395.

    Article  PubMed  Google Scholar 

  29. Uribe JS. Neural anatomy, neuromonitoring and related complications in extreme lateral interbody fusion: video lecture. Eur Spine J. 2015;24(S3):445–6. https://doi.org/10.1007/s00586-015-3950-x.

    Article  PubMed  Google Scholar 

  30. Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13(2):260–6. https://doi.org/10.3171/2010.3.SPINE09766.

    Article  PubMed  Google Scholar 

  31. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):1–7. https://doi.org/10.3171/2010.1.FOCUS09263.

    Article  Google Scholar 

  32. Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28(3):1–8. https://doi.org/10.3171/2010.1.FOCUS09286.

    Article  Google Scholar 

  33. Langeloo DD, Lelivelt A, Journée HL, Slappendel R, De Kleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine (Phila Pa 1976). 2003;28(10):1043–50. https://doi.org/10.1097/00007632-200305150-00017.

    Article  PubMed  Google Scholar 

  34. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88(3):457–70. https://doi.org/10.3171/jns.1998.88.3.0457.

    Article  CAS  PubMed  Google Scholar 

  35. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64. https://doi.org/10.1016/j.clinph.2007.09.135.

    Article  PubMed  Google Scholar 

  36. MacDonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77. https://doi.org/10.1007/s10877-006-9033-0.

    Article  PubMed  Google Scholar 

  37. MacDonald DB, Janusz M. An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol. 2002;19(1):43–54. https://doi.org/10.1097/00004691-200201000-00006.

    Article  PubMed  Google Scholar 

  38. Kong CY, Hosseini AM, Belanger LM, et al. A prospective evaluation of hemodynamic management in acute spinal cord injury patients. Spinal Cord. 2013;51(6):466–71. https://doi.org/10.1038/sc.2013.32.

    Article  CAS  PubMed  Google Scholar 

  39. Walters BC, Hadley MN, Hurlbert RJ, et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60(Suppl 1):82–91. https://doi.org/10.1227/01.neu.0000430319.32247.7f.

    Article  PubMed  Google Scholar 

  40. Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2010;48(5):356–62. https://doi.org/10.1038/sc.2009.150.

    Article  CAS  PubMed  Google Scholar 

  41. Hawryluk G, Whetstone W, Saigal R, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. 2015;32(24):1958–67. https://doi.org/10.1089/neu.2014.3778.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Altschul D, Kobets AJ, Nakhla J, et al. Postoperative urinary retention in patients undergoing elective spinal surgery. J Neurosurg Spine. 2017;26(2):229–34. https://doi.org/10.3171/2016.8.SPINE151371.

    Article  PubMed  Google Scholar 

  43. Normelli H, Aaro S, Hedlund R, Svensson O, Strömberg L. Urethral catheterization in spinal surgery: a randomized prospective study. Eur Spine J. 1993;2(3):132–5. https://doi.org/10.1007/BF00301409.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, D.Y., Sandhu, F.A. (2023). Adjunctive Measures: Neuromonitoring, Perfusion Monitoring, Foley. In: O'Brien, J.R., Weinreb, J.B., Babrowicz, J.C. (eds) Lumbar Spine Access Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-48034-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48034-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48033-1

  • Online ISBN: 978-3-031-48034-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics