Skip to main content

Current Concepts in Predictive Modeling and Artificial Intelligence

  • Chapter
  • First Online:
Surgical Management of Knee Arthritis

Abstract

Predictive modeling promises to improve our understanding of what variables influence patient satisfaction following total knee arthroplasty (TKA). Questions remain regarding the most relevant inputs and outputs for modeling outcomes in this field. The aim was to identify the predictor strategies used for systematic data collection with the highest likelihood of success in predicting clinical outcomes. A PRISMA systematic review was conducted to identify all clinical studies that had used predictive models or that assessed predictive features for outcomes after TKA between 1996 and 2020. Preoperative predictive factors strongly associated with postoperative clinical outcomes were knee pain, knee-specific Patient-Reported Outcome Measure (PROM) scores, range of motion, the severity of osteoarthritis, and mental health scores. The outcome measures that correlated best with the predictive models were improvement of PROM scores, pain scores, and patient satisfaction. Several algorithms, based on PROM improvement, patient satisfaction, or pain after TKA, have been developed to improve decision-making regarding both indications for surgery and surgical strategy. Functional features such as preoperative pain and PROM scores were highly predictive for clinical outcomes following TKA. Some variables such as demographics data or knee alignment were less strongly correlated with TKA outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5. https://doi.org/10.2106/JBJS.F.00222.

    Article  PubMed  Google Scholar 

  2. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63. https://doi.org/10.1007/s11999-009-1119-9.

    Article  PubMed  Google Scholar 

  3. Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open. 2012;2(1):e000435. https://doi.org/10.1136/bmjopen-2011-000435.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baker PN, Rushton S, Jameson SS, Reed M, Gregg P, Deehan DJ. Patient satisfaction with total knee replacement cannot be predicted from pre-operative variables alone: a cohort study from the National Joint Registry for England and Wales. Bone Joint J. 2013;95-B(10):1359–65. https://doi.org/10.1302/0301-620X.95B10.32281.

    Article  CAS  PubMed  Google Scholar 

  5. Blackburn J, Qureshi A, Amirfeyz R, Bannister G. Does preoperative anxiety and depression predict satisfaction after total knee replacement? Knee. 2012;19(5):522–4. https://doi.org/10.1016/j.knee.2011.07.008.

    Article  PubMed  Google Scholar 

  6. Barlow T, Dunbar M, Sprowson A, Parsons N, Griffin D. Development of an outcome prediction tool for patients considering a total knee replacement—the Knee Outcome Prediction Study (KOPS). BMC Musculoskelet Disord. 2014;15:451. https://doi.org/10.1186/1471-2474-15-451.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Singh JA, Lewallen DG. Underlying diagnosis predicts patient-reported outcomes after revision total knee arthroplasty. Rheumatology (Oxford). 2014;53(2):361–6. https://doi.org/10.1093/rheumatology/ket357.

    Article  PubMed  Google Scholar 

  8. Williams DP, O’Brien S, Doran E, et al. Early postoperative predictors of satisfaction following total knee arthroplasty. Knee. 2013;20(6):442–6. https://doi.org/10.1016/j.knee.2013.05.011.

    Article  CAS  PubMed  Google Scholar 

  9. Lungu E, Desmeules F, Dionne CE, Belzile EL, Vendittoli PA. Prediction of poor outcomes six months following total knee arthroplasty in patients awaiting surgery. BMC Musculoskelet Disord. 2014;15:299. https://doi.org/10.1186/1471-2474-15-299.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bini SA, Shah RF, Bendich I, Patterson JT, Hwang KM, Zaid MB. Machine learning algorithms can use wearable sensor data to accurately predict six-week patient-reported outcome scores following joint replacement in a prospective trial. J Arthroplasty. 2019;34(10):2242–7. https://doi.org/10.1016/j.arth.2019.07.024.

    Article  PubMed  Google Scholar 

  11. Shahid N, Rappon T, Berta W. Applications of artificial neural networks in health care organizational decision-making: a scoping review. PLoS One. 2019;14(2):e0212356. https://doi.org/10.1371/journal.pone.0212356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suk HI, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging Initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220(2):841–59. https://doi.org/10.1007/s00429-013-0687-3.

    Article  PubMed  Google Scholar 

  13. Amarasingham R, Moore BJ, Tabak YP, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981–8. https://doi.org/10.1097/MLR.0b013e3181ef60d9.

    Article  PubMed  Google Scholar 

  14. Zhang W, Li R, Deng H, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage. 2015;10(8):214–24. https://doi.org/10.1016/j.neuroimage.2014.12.061.

    Article  Google Scholar 

  15. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3. https://doi.org/10.1186/2047-2501-2-3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplasty. 2018;33(8):2358–61. https://doi.org/10.1016/j.arth.2018.02.067.

    Article  PubMed  Google Scholar 

  17. Baker PN, van der Meulen JH, Lewsey J, Gregg PJ, National Joint Registry for England and Wales. The role of pain and function in determining patient satisfaction after total knee replacement. Data from the National Joint Registry for England and Wales. J Bone Joint Surg Br. 2007;89(7):893–900. https://doi.org/10.1302/0301-620X.89B7.19091.

    Article  CAS  PubMed  Google Scholar 

  18. Baker PN, Deehan DJ, Lees D, et al. The effect of surgical factors on early patient-reported outcome measures (PROMS) following total knee replacement. J Bone Joint Surg Br. 2012;94(8):1058–66. https://doi.org/10.1302/0301-620X.94B8.28786.

    Article  CAS  PubMed  Google Scholar 

  19. Judge A, Arden NK, Cooper C, et al. Predictors of outcomes of total knee replacement surgery. Rheumatology (Oxford). 2012;51(10):1804–13. https://doi.org/10.1093/rheumatology/kes075.

    Article  PubMed  Google Scholar 

  20. Brander VA, Stulberg SD, Adams AD et al. Predicting total knee replacement pain: a prospective, observational study. Clin Orthop Relat Res. 2003;(416):27–36. https://doi.org/10.1097/01.blo.0000092983.12414.e9.

  21. Wylde V, Rooker J, Halliday L, Blom A. Acute postoperative pain at rest after hip and knee arthroplasty: severity, sensory qualities and impact on sleep. Orthop Traumatol Surg Res. 2011;97(2):139–44. https://doi.org/10.1016/j.otsr.2010.12.003.

    Article  CAS  PubMed  Google Scholar 

  22. Escobar A, Quintana JM, Bilbao A, et al. Development of explicit criteria for prioritization of hip and knee replacement. J Eval Clin Pract. 2007;13(3):429–34. https://doi.org/10.1111/j.1365-2753.2006.00733.x.

    Article  PubMed  Google Scholar 

  23. Riddle DL, Perera RA, Jiranek WA, Dumenci L. Using surgical appropriateness criteria to examine outcomes of total knee arthroplasty in a United States sample. Arthritis Care Res (Hoboken). 2015;67(3):349–57. https://doi.org/10.1002/acr.22428.

    Article  PubMed  Google Scholar 

  24. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huijbregts HJ, Khan RJ, Fick DP, Jarrett OM, Haebich S. Prosthetic alignment after total knee replacement is not associated with dissatisfaction or change in Oxford Knee Score: a multivariable regression analysis. Knee. 2016;23(3):535–9. https://doi.org/10.1016/j.knee.2015.12.007.

    Article  PubMed  Google Scholar 

  26. Abrecht CR, Cornelius M, Wu A, et al. Prediction of pain and opioid utilization in the perioperative period in patients undergoing primary knee arthroplasty: psychophysical and psychosocial factors. Pain Med. 2019;20(1):161–71. https://doi.org/10.1093/pm/pny020.

    Article  PubMed  Google Scholar 

  27. Zabawa L, Li K, Chmell S. Patient dissatisfaction following total knee arthroplasty: external validation of a new prediction model. Eur J Orthop Surg Traumatol. 2019;29(4):861–7. https://doi.org/10.1007/s00590-019-02375-w.

    Article  PubMed  Google Scholar 

  28. Van Onsem S, Van Der Straeten C, Arnout N, Deprez P, Van Damme G, Victor J. A new prediction model for patient satisfaction after total knee arthroplasty. J Arthroplasty. 2016;31(12):2660–2667.e2661. https://doi.org/10.1016/j.arth.2016.06.004.

    Article  PubMed  Google Scholar 

  29. Lewis GN, Rice DA, McNair PJ, Kluger M. Predictors of persistent pain after total knee arthroplasty: a systematic review and meta-analysis. Br J Anaesth. 2015;114(4):551–61. https://doi.org/10.1093/bja/aeu441.

    Article  CAS  PubMed  Google Scholar 

  30. Tolk JJ, Waarsing JEH, Janssen RPA, van Steenbergen LN, Bierma-Zeinstra SMA, Reijman M. Development of preoperative prediction models for pain and functional outcome after total knee arthroplasty using the Dutch arthroplasty register data. J Arthroplasty. 2020;35(3):690–698.e692. https://doi.org/10.1016/j.arth.2019.10.010.

    Article  PubMed  Google Scholar 

  31. Clement ND, Merrie KL, Weir DJ, Holland JP, Deehan DJ. Asynchronous bilateral total knee arthroplasty: predictors of the functional outcome and patient satisfaction for the second knee replacement. J Arthroplasty. 2019;34(12):2950–6. https://doi.org/10.1016/j.arth.2019.06.056.

    Article  PubMed  Google Scholar 

  32. Clement ND, Walker LC, Bardgett M, et al. Patient age of less than 55 years is not an independent predictor of functional improvement or satisfaction after total knee arthroplasty. Arch Orthop Trauma Surg. 2018;138(12):1755–63. https://doi.org/10.1007/s00402-018-3041-7.

    Article  CAS  PubMed  Google Scholar 

  33. Maratt JD, Lee YY, Lyman S, Westrich GH. Predictors of satisfaction following total knee arthroplasty. J Arthroplasty. 2015;30(7):1142–5. https://doi.org/10.1016/j.arth.2015.01.039.

    Article  PubMed  Google Scholar 

  34. Clement ND, Bardgett M, Weir D, Holland J, Gerrand C, Deehan DJ. Three groups of dissatisfied patients exist after total knee arthroplasty: early, persistent, and late. Bone Joint J. 2018;100-B(2):161–9. https://doi.org/10.1302/0301-620X.100B2.BJJ-2017-1016.R1.

    Article  CAS  PubMed  Google Scholar 

  35. Giurea A, Fraberger G, Kolbitsch P, et al. The impact of personality traits on the outcome of total knee arthroplasty. Biomed Res Int. 2016;52:82–160. https://doi.org/10.1155/2016/5282160.

    Article  CAS  Google Scholar 

  36. Pua YH, Poon CL, Seah FJ, et al. Predicting individual knee range of motion, knee pain, and walking limitation outcomes following total knee arthroplasty. Acta Orthop. 2019;90(2):179–86. https://doi.org/10.1080/17453674.2018.1560647.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bourne RB, McCalden RW, MacDonald SJ, Mokete L, Guerin J. Influence of patient factors on TKA outcomes at 5 to 11 years followup. Clin Orthop Relat Res. 2007;46(4):27–31. https://doi.org/10.1097/BLO.0b013e318159c5ff.

    Article  Google Scholar 

  38. Maempel JF, Clement ND, Brenkel IJ, Walmsley PJ. Range of movement correlates with the Oxford knee score after total knee replacement: a prediction model and validation. Knee. 2016;23(3):511–6. https://doi.org/10.1016/j.knee.2016.01.009.

    Article  PubMed  Google Scholar 

  39. Franklin PD, Li W, Ayers DC. The Chitranjan Ranawat award: functional outcome after total knee replacement varies with patient attributes. Clin Orthop Relat Res. 2008;466(11):2597–604. https://doi.org/10.1007/s11999-008-0428-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kunze KN, Akram F, Fuller BC, Zabawa L, Sporer SM, Levine BR. Internal validation of a predictive model for satisfaction after primary total knee arthroplasty. J Arthroplasty. 2019;34(4):663–70. https://doi.org/10.1016/j.arth.2018.12.020.

    Article  PubMed  Google Scholar 

  41. Sueyoshi T, Lackey WG, Malinzak RA, et al. Predicting pain in total and partial knee arthroplasty. Open J Orthop. 2015;5:151–6.

    Article  Google Scholar 

  42. Schnurr C, Jarrous M, Gudden I, Eysel P, Konig DP. Pre-operative arthritis severity as a predictor for total knee arthroplasty patients’ satisfaction. Int Orthop. 2013;37(7):1257–61. https://doi.org/10.1007/s00264-013-1862-0.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Calkins TE, Culvern C, Nahhas CR, et al. External validity of a new prediction model for patient satisfaction after total knee arthroplasty. J Arthroplasty. 2019;34(8):1677–81. https://doi.org/10.1016/j.arth.2019.04.021.

    Article  PubMed  Google Scholar 

  44. Sanchez-Santos MT, Garriga C, Judge A, et al. Development and validation of a clinical prediction model for patient-reported pain and function after primary total knee replacement surgery. Sci Rep. 2018;8(1):3381. https://doi.org/10.1038/s41598-018-21714-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dowsey MM, Liew D, Stoney JD, Choong PF. The impact of pre-operative obesity on weight change and outcome in total knee replacement: a prospective study of 529 consecutive patients. J Bone Joint Surg Br. 2010;92(4):513–20. https://doi.org/10.1302/0301-620X.92B4.23174.

    Article  CAS  PubMed  Google Scholar 

  46. Rajgopal V, Bourne RB, Chesworth BM, MacDonald SJ, McCalden RW, Rorabeck CH. The impact of morbid obesity on patient outcomes after total knee arthroplasty. J Arthroplasty. 2008;23(6):795–800. https://doi.org/10.1016/j.arth.2007.08.005.

    Article  PubMed  Google Scholar 

  47. Hinarejos P, Ferrer T, Leal J, Torres-Claramunt R, Sanchez-Soler J, Monllau JC. Patient-reported allergies cause inferior outcomes after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24(10):3242–6. https://doi.org/10.1007/s00167-015-3837-8.

    Article  PubMed  Google Scholar 

  48. Kunze KN, Polce EM, Sadauskas AJ, Levine BR. Development of machine learning algorithms to predict patient dissatisfaction after primary total knee arthroplasty. J Arthroplasty. 2020;35:3117. https://doi.org/10.1016/j.arth.2020.05.061.

    Article  PubMed  Google Scholar 

  49. Twiggs JG, Wakelin EA, Fritsch BA, et al. Clinical and statistical validation of a probabilistic prediction tool of total knee arthroplasty outcome. J Arthroplasty. 2019;34(11):2624–31. https://doi.org/10.1016/j.arth.2019.06.007.

    Article  PubMed  Google Scholar 

  50. Van Onsem S, Verstraete M, Dhont S, Zwaenepoel B, Van Der Straeten C, Victor J. Improved walking distance and range of motion predict patient satisfaction after TKA. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3272–9. https://doi.org/10.1007/s00167-018-4856-z.

    Article  PubMed  Google Scholar 

  51. Davis ET, Lingard EA, Schemitsch EH, Waddell JP. Effects of socioeconomic status on patients’ outcome after total knee arthroplasty. Int J Qual Health Care. 2008;20(1):40–6. https://doi.org/10.1093/intqhc/mzm059.

    Article  PubMed  Google Scholar 

  52. Nilsdotter AK, Toksvig-Larsen S, Roos EM. Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop. 2009;80(1):55–61. https://doi.org/10.1080/17453670902805007.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lim CR, Harris K, Dawson J, Beard DJ, Fitzpatrick R, Price AJ. Floor and ceiling effects in the OHS: an analysis of the NHS PROMs data set. BMJ Open. 2015;5(7):e007765. https://doi.org/10.1136/bmjopen-2015-007765.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hamilton DF, Giesinger JM, MacDonald DJ, Simpson AH, Howie CR, Giesinger K. Responsiveness and ceiling effects of the Forgotten Joint Score-12 following total hip arthroplasty. Bone Joint Res. 2016;5(3):87–91. https://doi.org/10.1302/2046-3758.53.2000480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lyman S, Lee YY, Franklin PD, Li W, Mayman DJ, Padgett DE. Validation of the HOOS, JR: a short-form hip replacement survey. Clin Orthop Relat Res. 2016;474(6):1472–82. https://doi.org/10.1007/s11999-016-4718-2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Steinhoff AK, Bugbee WD. Knee injury and osteoarthritis outcome score has higher responsiveness and lower ceiling effect than Knee Society Function Score after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2627–33. https://doi.org/10.1007/s00167-014-3433-3.

    Article  PubMed  Google Scholar 

  57. Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak. 2019;19(1):3. https://doi.org/10.1186/s12911-018-0731-6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qiu R, Jia Y, Wang F, et al. Predictive modeling of the total joint replacement surgery risk: a deep learning based approach with claims data. AMIA Jt Summits Transl Sci Proc. 2019. p. 562–571.

    Google Scholar 

  59. Li H, Jiao J, Zhang S, Tang H, Qu X, Yue B. Construction and comparison of predictive models for length of stay after total knee arthroplasty: regression model and machine learning analysis based on 1,826 cases in a single Singapore center. J Knee Surg. 2022;35:7. https://doi.org/10.1055/s-0040-1710573.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batailler, C., Lording, T., De Massari, D., Witvoet-Braam, S., Bini, S., Lustig, S. (2023). Current Concepts in Predictive Modeling and Artificial Intelligence. In: Deshmukh, A.J., Shabani, B.H., Waldstein, W., Oni, J.K. (eds) Surgical Management of Knee Arthritis. Springer, Cham. https://doi.org/10.1007/978-3-031-47929-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47929-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47928-1

  • Online ISBN: 978-3-031-47929-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics