Skip to main content

Body Waves– and Surface Waves–Derived Moment Tensor Catalog for Garhwal-Kumaon Himalayas

  • Chapter
  • First Online:
Recent Developments in Earthquake Seismology

Abstract

Moment tensor associated with an earthquake is the mathematical representation of the movement along a fault. It comprises nine generalized vector couples (six independent) that describe the material strength at the source, alignment of the fault and the amount of slip. This study presents a moment tensor collection of 16 earthquakes that occurred in Uttarakhand, India between 2010 and 2021. We perform inversion tests by using both body and surface waves. Our goal is to find the minimum misfit solution by performing a grid search over source depths, magnitude, and orientation of fault. A series of inversion tests were performed for each event using varying bandpass for surface and body waves and removing bad stations to obtain the best possible solutions. The results, thus, obtained provide insight into the complex tectonics processes at work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ader, T., Avouac, J. P., Liu‐Zeng, J., Lyon‐Caen, H., Bollinger, L., Galetzka, J., ... & Flouzat, M. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 117(B4).

    Google Scholar 

  • Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems. Elsevier.

    Google Scholar 

  • Avouac, J. P. (2003). Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Advances in Geophysics, 46, 1–80.

    Article  Google Scholar 

  • Bajaj, S., & Sharma, M. L. (2019). Modeling earthquake recurrence in the Himalayan seismic belt using time-dependent stochastic models: implications for future seismic hazards. Pure and Applied Geophysics, 176, 5261–5278.

    Article  Google Scholar 

  • Banerjee, P., & Bürgmann, R. (2002). Convergence across the northwest Himalaya from GPS measurements. Geophysical Research Letters, 29(13), 30–31.

    Article  Google Scholar 

  • Berger, A., Jouanne, F., Hassani, R., & Mugnier, J. L. (2014). Modelling the spatial distribution of present-day deformation in Nepal: How cylindrical is the main Himalayan thrust in Nepal? Geophysical Journal International, 156(1), 94–114.

    Article  Google Scholar 

  • Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A python toolbox for seismology. Seismological Research Letters, 81(3), 530–533.

    Article  Google Scholar 

  • Bilham, R., Bodin, P., & Jackson, M. (1995). Entertaining a great earthquake in western Nepal: Historic inactivity and geodetic tests for the present state of strain. Journal of Nepal Geological Society, 11(1), 73–78.

    Google Scholar 

  • Bilham, R., Gaur, V. K., & Molnar, P. (2001). Himalayan seismic hazard. Science, 293, 1442–1442.

    Article  CAS  Google Scholar 

  • Caldwell, W. B., Klemperer, S. L., Lawrence, J. F., Rai, S. S., & Ashish. (2013). Characterizing the main Himalayan thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth and Planetary Science Letters, 367, 15–27.

    Article  CAS  Google Scholar 

  • Cesca, S., Rohr, A., & Dahm, T. (2013). Discrimination of induced seismicity by full moment tensor inversion and decomposition. Journal of Seismology, 17(1), 147–163.

    Article  Google Scholar 

  • Cesca, S., Heimann, S., Stammler, K., & Dahm, T. (2010). Automated procedure for point and kinematic source inversion at regional distances. Journal of Geophysical Research, 115(B6), B06304.

    Article  Google Scholar 

  • Cotton, F., Campillo, M., Deschamps, A., & Rastogi, B. K. (1996). Rupture history and seismotectonics of the 1991 Uttarkashi, Himalaya earthquake. Tectonophysics, 258(1–4), 35–51.

    Google Scholar 

  • Dreger, D., & Woods, B. (2002). Regional distance seismic moment tensors of nuclear explosions. Tectonophysics, 356(1–3), 139–156.

    Google Scholar 

  • Duputel, Z., Rivera, L., Kanamori, H., & Hayes, G. (2012). W phase source inversion for moderate to large earthquakes (1990–2010). Geophysical Journal International, 189(2), 1125–1147.

    Google Scholar 

  • Ebel, J. E., & Bonjer, K. P. (1990). Moment tensor inversion of small earthquakes in Southwestern Germany for the fault plane solution. Geophysical Journal International, 101(1), 133–146.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9.

    Google Scholar 

  • Dasgupta, S., Narula, P. L., Acharyya, S. K., & Banerjee, J. (2000). Seismotectonic atlas of India and its environs. Geological Survey of India.

    Google Scholar 

  • Hajra, S., Hazarika, D., Kumar, N., Pal, S. K., & Roy, P. N. S. (2021). Seismotectonics and stress perspective of the Kumaon Himalaya: A geophysical evidence of a lesser Himalayan duplex. Tectonophysics, 806, 228801.

    Article  Google Scholar 

  • Hardebeck, J. L., & Shearer, P. M. (2008). HASH: A FORTRAN Program for computing earthquake first-motion focal mechanisms–v1. 2–January 31, 2008.

    Google Scholar 

  • He, X., Ni, S., Ye, L., Lay, T., Liu, Q., & Koper, K. D. (2015). Rapid seismological quantification of source parameters of the 25 April 2015 Nepal earthquake. Seismological Research Letters, 86(6), 1568–1577.

    Article  Google Scholar 

  • Isacks, B., Oliver, J., & Sykes, L. R. (1968). Seismology and the new global tectonics. Journal of Geophysical Research, 73(18), 5855–5899.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709–716.

    Article  Google Scholar 

  • Kanna, N., Gupta, S., & Prakasam, K. S. (2018). Micro-seismicity and seismotectonic study in Western Himalaya–Ladakh-Karakoram using local broadband seismic data. Tectonophysics, 726, 100–109.

    Article  Google Scholar 

  • Kayal, J. R. (2001). Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics, 339(3–4), 331–351.

    Google Scholar 

  • Kayal, J. R., Ram, S., Singh, O. P., Chakraborty, P. K., & Karunakar, G. (2003). Aftershocks of the March 1999 Chamoli earthquake and seismotectonic structure of the Garhwal Himalaya. Bulletin of the Seismological Society of America, 93, 109–117.

    Article  Google Scholar 

  • Khattri, K. M., & Tyagi, A. K. (1983). Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic potential. Tectonophysics, 96(3–4), 281–297.

    Article  Google Scholar 

  • Khattri, K. N. (1987). Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics, 138(1), 79–92.

    Google Scholar 

  • Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003.

    Article  Google Scholar 

  • Kumar, R., Gupta, S. C., & Kumar, A. (2015). Determination and Identification of focal mechanism solutions for Himalayan Earthquakes from waveform inversion employing ISOLA software. Natural Hazards, 76(2), 1163–1181.

    Article  Google Scholar 

  • Kumar, P., Silwal, V., Mahanta, R., Maurya, V. K., Kamal, Sharma, M. L., & Ammani, A. (2023). Near real-time detection and moment tensor inversion of the 11 May 2022. Dharchula Earthquake GeoHazards, 4(4), 515–525. https://doi.org/10.3390/geohazards4040029

  • Lei, X., Wang, Z., & Su, J. (2019). The December 2018 ML 5.7 and January 2019 ML 5.3 Earthquakes in South Sichuan Basin Induced by Shale Gas Hydraulic Fracturing. Seismological Research Letters, 90(3), 1099–1110.

    Article  Google Scholar 

  • Ma, K., & Wu, Y. (2019). Preface to the Focus Section on the 6 February 2018 Mw 6.4 Hualien, Taiwan, Earthquake. Seismological Research Letters, 90(1), 15–18.

    Article  Google Scholar 

  • Mahesh, P., Gupta, S., Saikia, U., & Rai, S. S. (2015). Seismotectonics and crustal stress field in the Kumaon–Garhwal Himalaya. Tectonophysics, 655, 124–138.

    Article  Google Scholar 

  • Mahanta, R., & Silwal, V. (2024) Processing local seismological waveform datasets for moment tensor inversion using mtuq, Zenodo, https://doi.org/10.5281/zenodo.10499910

  • Mahesh, P., Rai, S. S., Sivaram, K., Paul, A., Gupta, S., Sarma, R., & Gaur, V. K. (2013). One dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon–Garhwal Himalaya. Bulletin of the Seismological Society of America, 103(1), 328–339.

    Google Scholar 

  • Megies, T., Beyreuther, M., Barsch, R., Krischer, L., & Wassermann, J. (2011). ObsPy–What can it do for data centers and observatories? Annals of Geophysics, 54(1), 47–58.

    Google Scholar 

  • Molnar, P. (1990). A review of seismicity and the rates of active underthrusting and deformation at the Himalaya. Journal of Himalayan Geology, 1, 131–154.

    Google Scholar 

  • Mukhopadhyay, B., Acharyya, A., & Dasgupta, S. (2011). Potential source zones for Himalayan earthquakes: constraints from spatial–temporal clusters. Natural Hazards, 57, 369–383.

    Google Scholar 

  • Oppenheimer, D. H., Reasenberg, P. A., & Simpson, R. W. (1988). Fault plane solutions for the 1984 Morgan Hill, California, earthquake sequence: Evidence for the state of stress on the Calaveras fault. Journal of Geophysical Research: Solid Earth, 93(B8), 9007–9026.

    Google Scholar 

  • Paul, A., Bhakuni, S. S., Pant, C. C., Darmwal, G. S., & Pathak, V. (2010). Microseismicity in central part of Inner Kumaun Lesser Himalaya: Implication to active seismotectonics. Himalayan Geology, 31(2), 107–115.

    Google Scholar 

  • Paul, A., & Kumar, N. (2010). Estimates of source parameters of M 4.9 Kharsali earthquake using waveform modelling. Journal of Earth System Science, 119, 731–743.

    Google Scholar 

  • Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. (2005). High resolution surface wave tomography from ambient seismic noise. Science, 307, 1615–1618.

    Article  CAS  Google Scholar 

  • Silwal, V., & Tape, C. (2016). Seismic moment tensors and estimated uncertainties in southern Alaska. Journal of Geophysical Research: Solid Earth, 121(4), 2772–2797.

    Article  Google Scholar 

  • Silwal, V., 2015. Seismic moment tensor catalog for southern Alaska.

    Google Scholar 

  • Sokos, E. N., & Zahradnik, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34(8), 967–977.

    Article  Google Scholar 

  • Tape, W., & Tape, C. (2012). A geometric setting for moment tensors. Geophysical Journal International, 190(1), 476–498.

    Article  Google Scholar 

  • Tape, W., & Tape, C. (2015). A uniform parametrization of moment tensors. Geophysical Journal International, 202(3), 2074–2081.

    Article  Google Scholar 

  • Tiwari, A., Paul, A., Singh, R., & Upadhyay, R. (2021). Potential seismogenic asperities in the Garhwal–Kumaun region, NW Himalaya: Seismotectonic implications. Natural Hazards, 107, 73–95.

    Google Scholar 

  • Verma, R. K., Mukhopadhyay, M., & Roy, B. N. (1977). Seismotectonics of the Himalaya, and the continental plate convergence. Tectonophysics, 42(2–4), 319–335.

    Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union, 94(45), 409–410.

    Article  Google Scholar 

  • Zhao, L.-S., & Helmberger, D. V. (1994). Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1), 91–104.

    Google Scholar 

  • Zhou, P., Yang, H., Wang, B., & Zhuang, J. (2019). Seismological investigations of induced earthquakes near the Hutubi underground gas storage facility. Journal of Geophysical Research: Solid Earth, 124(8), 8753–8770.

    Article  Google Scholar 

  • Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5), 1634–1641.

    Google Scholar 

  • Zhu, L., & Zhou, X. (2016). Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence. Physics and Chemistry of the Earth, Parts A/B/C, 95, 10–18.

    Google Scholar 

  • Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627.

    Article  Google Scholar 

Download references

Acknowledgement

We thank IIT Roorkee for provinding financial support and infrastructure for carrying out this work. The waveform data used in this study is obtained from the broadband seismometer network deployed in Garhwal Himalaya by the Earthquake Engineering Department, IIT Roorkee, and funded by Tehri Hydro Development Corporation India Ltd. (THDCIL). We thank Prof. S. C. Gupta and Dr. Arup Sen, for operations and management of seismic netrwork, and discussion regarding the metadata of locally saved data. We thank Navneet Srivastava for technical support. All the maps are drawn by the python version of Generic Mapping Tool (PyGMT) (Wessel et al., 2013), and inversion has been done by MTUQ (https://github.com/uafgeotools/mtuq), which uses Obspy (a Python) framework for processing seismological data (Beyreuther et al., 2010; Megies et al., 2011; Krischer et al., 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Silwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahanta, R., Silwal, V., Sharma, M.L. (2024). Body Waves– and Surface Waves–Derived Moment Tensor Catalog for Garhwal-Kumaon Himalayas. In: Kumar, R., Singh, R., Kanhaiya, S., Maurya, S.P. (eds) Recent Developments in Earthquake Seismology. Springer, Cham. https://doi.org/10.1007/978-3-031-47538-2_4

Download citation

Publish with us

Policies and ethics