Skip to main content

Analysis of the Influence of Human Exposure to Risk and ESG as Motivators for the Implementation of Climbing and Mobile Robots

  • Conference paper
  • First Online:
Synergetic Cooperation Between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 810))

Included in the following conference series:

  • 54 Accesses

Abstract

The primary purpose of climber robots is to undertake tasks that may be hazardous for humans working at height and in hard-to-reach spaces. They improve safety as well as enhance task efficiency and decrease labor costs. Climber robots have been extensively used for activities such as bridge inspection, high-rise building cleaning, fruit picking, high-altitude rescue and military reconnaissance. This paper reviews a list of 51 articles published in the field of mobile robotics and climbing robots in the last five years, mainly related to onshore and offshore oil and gas applications. From the generation of this list, a trend analysis has been performed, where the observed result allowed the perception that the reduction of human exposure to risk (HRE), as well as the ESG principles direct and motivate robotic implementations in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shukla, A., Karki, H.: Application of robotics in onshore oil and gas industry—a review Part I. Robot. Auton. Syst. 75(Part B), 490–507 (2016). https://doi.org/10.1016/j.robot.2015.09.012

  2. Gihleb, R., Giuntella, O., Stella, L., Wang, T.: Industrial robots, workers’ safety, and helth. Labour Econ. 78, 102205. https://doi.org/10.1016/j.labeco.2022.102205

  3. Elia, L., Alonso, R., Canada, J.: Hephaestus-highly automated physical achievements and performances using cable robots unique systems. Proceeding. https://doi.org/10.3390/proceedings2150558

  4. Ibrahimov, B., Namazov, M.: Robotics in petroleum and safety requirements forcing open innovation to be embraced. IFAC Papers Online 51–30, 688–692 (2018). https://doi.org/10.1016/j.ifacol.2018.11.215

    Article  Google Scholar 

  5. Bengle, M., Pfeiffer, K., Graf, B., Bulbeck, A., Verl, A.: Mobile robots for offshore inspection and manipulation. In: IEEE Conference on Intelligent Robots and System, pp. 3317–3322 (2009). https://doi.org/10.1109/IROS.2009.5353885

  6. Skourup, C., Pretlove, J.: Remote inspection and intervention-remote robotics at work in harsh oil and gas environments, 50–55 (2012)

    Google Scholar 

  7. Parween, R., Tan, Y.W., Elara, M.R.: Design and development of a vertical propagation robot for inspection of flat and curved surfaces. IEEE Access 9 (2021). https://doi.org/10.1109/ACCESS.2020.3039014

  8. Chen, X., Wu, Y., Hao, H., Shi, H., Huang, H.: Tracked wall-climbing robot for calibration of large vertical metal tanks. Appl. Sci. 9, 2671 (2019). https://doi.org/10.3390/app9132671

    Article  Google Scholar 

  9. Le Vu, A., Veerajagadheswar, P., Kyaw, P., Muthugala, M., Elara, M., Kuma, M., Nhan, N.: Towards optimal hydro-blasting in reconfigurable climbing system for corroded ship hull cleaning and maintenance. Expert Syst. Appl. 170, 114519 (2021). https://doi.org/10.1016/j.eswa.2020.114519

    Article  Google Scholar 

  10. Kermorgant, O.: A magnetic climbing robot to perform autonomous welding in the shipbuilding industry. Robot. Comput. Integr. Manuf. 53, 178–186 (2018). https://doi.org/10.1016/j.rcim.2018.04.008

    Article  Google Scholar 

  11. Gao, F., Fan, J., Zhang, L., Jiang, J., He, S.: Magnetic crawler climbing detection robot basing on metal magnetic memory testing technology. Robot. Auton. Syst. 125, 103439 (2020). https://doi.org/10.1016/j.robot.2020.103439

    Article  Google Scholar 

  12. Hu, J., Han, X., Tao, Y., Feng, S.: A magnetic crawler wall-climbing robot with capacity of high payload on the convex surface. Robot. Auton. Syst. 148, 103907 (2022). https://doi.org/10.1016/j.robot.2021.103907

    Article  Google Scholar 

  13. Park, C., Bae, J., Ryu, S., Lee, J., Seo, T.: R-track: separable modular climbing robot design for wall-to-wall transition. In: International Conference on Intelligent Robots and Systems (IROS). Las Vegas (2020). https://doi.org/10.1109/LRA.2020.3015170

  14. Kahnamouei, J., Moallem, M.: A comprehensive review of in-pipe robots. Ocean Eng. 277, 114260 (2023). https://doi.org/10.1016/j.oceaneng.2023.114260

    Article  Google Scholar 

  15. Miao, X., Zhao, H., Song, F., Ma, Y.: Dynamic characteristics and motion control of pipeline robot under deformation excitation in subsea pipeline. Ocean Eng. 266, 112790 (2022). https://doi.org/10.1016/j.oceaneng.2022.112790

    Article  Google Scholar 

  16. Li, H., Li, R., Zhang, J., Zhang, P.: Development of a pipeline inspection robot for the standard oil pipeline of China national petroleum corporation. Appl. Sci. 10, 2853 (2020). https://doi.org/10.3390/app10082853

    Article  Google Scholar 

  17. Fan, J., Yang, C., Chen, Y., Wang, H., Huang, Z.: An underwater robot with self-adaption mechanism for cleaning steel pipes with variable diameters. Ind. Robot.: Int. J. 45(2), 193–205 (2018). https://doi.org/10.1108/IR-09-2017-0168

    Article  Google Scholar 

  18. Christopher Gotts, C., Hall, B., Beaumont, O., Chen, Z., Cleaver, W., England, J., White, D., Thornton, B.: Development of a prototype autonomous inspection robot for offshore riser cables. Ocean Eng. 257, 111485 (2022). https://doi.org/10.1016/j.oceaneng.2022.111485

    Article  Google Scholar 

  19. Chen, G., Yang, H., Cao, H., Ji, S., Zeng, X.: Design of an embracing-type climbing robot for variation diameter rod. Ind. Robot.: Int. J. Robot. Res. Appl. Emerald Publishing Limited [ISSN 0143-991X] (2019). https://doi.org/10.1108/IR-09-2018-0200

  20. Lu, X., Zhao, S., Liu, X.: Design and analysis of a climbing robot for pylon maintenance. Ind. Robot.: Int. J. Emerald Publishing Limited [ISSN 0143-991X] (2018). https://doi.org/10.1108/IR-08-2017-0143

  21. Ding, N., Zheng, Z., Song, J., Sun, Z., Lam, T., Qian, H.: CCRobot-III: a Split-type Wire-driven cable climbing robot for cable-stayed bridge inspection. In: IEEE International Conference on Robotics and Automation (ICRA) (2020). https://doi.org/10.1109/ICRA40945.2020.9196772

  22. Bandyopadhyay, T., Steindl, R., Talbot, F., Kottege, N., Dungavell, R., Wood, B., Barker, J., Hoehn, K., Elfes, A.: Magneto: a versatile multi-limbed inspection robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018). https://doi.org/10.1109/IROS.2018.8593891

  23. Li, J., Huang, F., Tu, C., Tian, M., Wang, X.: Elastic obstacle-surmounting pipeline-climbing robot with composite wheels. Machines 10, 874 (2022). https://doi.org/10.3390/machines10100874

    Article  Google Scholar 

  24. Xu, F., Dai, S., Jiang, Q., Wang, X.: Developing a climbing robot for repairing cables of cable-stayed bridges. Autom. Constr. 129, 103807 (2021). https://doi.org/10.1016/j.autcon.2021.103807

    Article  Google Scholar 

  25. Han, G., Li, J., Chen, Y., Wang, S., Chen, H.: Dynamic modeling and motion control strategy of cable-driven cleaning robot for ship cargo hold. Mar. Sci. Eng. (2023). https://doi.org/10.3390/jmse11010087

    Article  Google Scholar 

  26. Begey, J., Cuvillon, L., Lesellier, M., Gouttefarde, M., Gangloff, J.: Dynamic control of parallel robots driven by flexible cables and actuated by position-controlled winches. IEEE Trans. Robot. (99), 1–8 (2018). https://doi.org/10.1109/TRO.2018.2875415

  27. Lee, D., Oh, S., Son, H.: Wire-driven parallel robotic system and its control for maintenance of offshore wind turbines. In: IEEE International Conference on Robotics and Automation (ICRA) (2016). https://doi.org/10.1109/ICRA.2016.7487221

  28. Gagliardini, L., Caro, S., Gouttefarde, M., Wenger, P., Girin, A.: Optimal design of cable-driven parallel robots for large industrial structures. In: IEEE International Conference on Robotics and Automation (ICRA) (2014). https://doi.org/10.1109/ICRA.2014.6907703

  29. Liu, Y., Seo, T.: AnyClimb-II: dry-adhesive linkage-type climbing robot for uneven vertical surfaces. Mech. Mach. Theory 124, 197–210 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.02.010

    Article  Google Scholar 

  30. Koh, D.C.Y., et al.: Design and analysis of a miniature two-wheg climbing robot with robust internal and external transitioning capabilities. In: IEEE, International Conference on Robotics and Automation (2019). https://doi.org/10.1109/ICRA.2019.8793910

  31. Liang, P., Gao, X., Zhang, Q., Gao, R., Li, M., Xu, Y., Zhu, W.: Design and stability analysis of a wall-climbing robot using propulsive force of propeller symmetry (2021). https://doi.org/10.3390/sym13010037

  32. Liu, Y., Wang, L., Niu, F., Li, P., Li, Y., Mei, T.: A track-type inverted climbing robot with bio-inspired spiny grippers. J. Bionic Eng. 17, 920–931 (2020)

    Article  Google Scholar 

  33. Wang, R., Huang, H., Yuan, J.: Design and analysis of a novel tree climbing robot mechanism. Res. Sq. (2020). https://doi.org/10.21203/rs.3.rs-55599/v1

  34. Wang, H., Yamamoto, A.: Analyses and solutions for the buckling of thin and flexible electrostatic inchworm climbing robots. IEEE Trans. Rob. 33, 889–900 (2017)

    Article  Google Scholar 

  35. Zhang, Q., Gao, X., Li, M., Wei, Y., Liang, P.: DP-climb: a hybrid adhesion climbing robot design and analysis for internal transition machines (2022). https://doi.org/10.3390/machines10080678

  36. Sun, J., Bauman, L., Yu, L., Zhao, B.: Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell Rep. Phys. Sci. (2023)

    Google Scholar 

  37. Stephen, J., Das, C., Khanna, V., Negi, V., Harikrishnan, K.: Autonomous staircase climbing robot for rescue application. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/912/3/032085

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doglas Negri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Negri, D. et al. (2024). Analysis of the Influence of Human Exposure to Risk and ESG as Motivators for the Implementation of Climbing and Mobile Robots. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation Between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-031-47269-5_4

Download citation

Publish with us

Policies and ethics