Skip to main content

Stair-Climbing Charts: On the Optimal Body Height for Quadruped Robots to Walk on Stairs

  • Conference paper
  • First Online:
Synergetic Cooperation Between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 810))

Included in the following conference series:

  • 59 Accesses

Abstract

Quadruped robots have increasingly become one of the main choices when a mobile platform must be deployed to execute tasks in unstructured environments. Nowadays, their major applications are concentrated on monitoring and inspection inside industrial buildings, oil &gas platforms, and construction sites. In such environments, going up and down staircases are a common need and represent the most dangerous scenario where the robot locomotion is expected to be robust enough to prevent catastrophic damages in case of a fall. In this paper, we present a study on the robot’s body height to maximize feasible footholds when walking on stairs. As per study results, this paper introduces the Stair Climbing Charts (SCCs), which describe the best robot height to climb stairs according to the robot’s upper-leg length and lower-leg geometry, as well as the stair geometry (rise/go). Moreover, this paper presents a set of SCCs for various well-known quadruped robots, sold commercially or prototypes of academic research labs, and discusses the major differences between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that by considering the HAA joint at zero position the analysis already considers the HAA position that minimizes undesired lower leg collision with the stair edges.

  2. 2.

    The hip position, described in the world sagittal plane, is represented by the pair of coordinates (\({x_h}^w\), \({z_h}^w\)).

References

  1. Ye, L., Wang, Y., Wang, X., Liu, H., Liang, B.: Optimized static gait for quadruped robots walking on stairs. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 921–927 (2021)

    Google Scholar 

  2. Yoon, D., Kim, B., Jo, I., Jeong, W.: A dynamic locomotion strategy for stair walking of a quadruped robot. In: 2021 18th International Conference on Ubiquitous Robots (UR), pp. 223–227 (2021)

    Google Scholar 

  3. Qi, S., Lin, W., Hong, Z., Chen, H., Zhang, W.: Perceptive autonomous stair climbing for quadrupedal robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2313–2320 (2021)

    Google Scholar 

  4. Liang, Q., Li, B., Xu, Y., Hou, L., Rong, X: Vision-based dynamic gait stair climbing algorithm for quadruped robot. In: 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1390–1395 (2022)

    Google Scholar 

  5. Antok, A.T.B., Darmawan, A., Alasiry, A.H., Hermawan, H., Binugroho, E.H., Marta, B.S., Wibowo, I.K., Julian, A., Suparman, A.F.I.: Quadruped robot balance control for stair climbing based on fuzzy logic. In: 2021 International Electronics Symposium (IES), pp. 552–557 (2021)

    Google Scholar 

  6. Kale, G., Gandhe, S., Dhulekar, P., Pawar, S.: Designing a quadruped with stair parameter analyzing and climbing capability. In: 2015 International Conference on Computing Communication Control and Automation, pp. 546–550 (2015)

    Google Scholar 

  7. Li, H., Qi, C., Chen, X., Mao, L., Zhao, Y., Gao, F.: Stair climbing capability-based dimensional synthesis for the multi-legged robot. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2950–2956 (2021)

    Google Scholar 

  8. Li, H., Qi, C., Mao, L., Zhao, Y., Chen, X., Gao, F.: Staircase-climbing capability-based dimension design of a hexapod robot. Mech. Mach. Theory 164, 104400 (2021)

    Google Scholar 

  9. Albert, A., Suppa, M., Gerth, W.: Detection of stair dimensions for the path planning of a bipedal robot. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556), vol. 2, pp. 1291–1296 (2001)

    Google Scholar 

  10. Sinha, A., Papadakis, P., Rajesh Elara, M.: A staircase detection method for 3d point clouds. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 652–656 (2014)

    Google Scholar 

  11. Zhao, X., Chen, W., Yan, X., Wang, J., Wu, X.: Real-time stairs geometric parameters estimation for lower limb rehabilitation exoskeleton. In: 2018 Chinese Control And Decision Conference (CCDC), pp. 5018–5023 (2018)

    Google Scholar 

  12. Woo, S., Shin, J., Lee, Y.H., Lee, Y.H., Lee, H., Kang, H., Choi, H.R., Moon, H.: Stair-mapping with point-cloud data and stair-modeling for quadruped robot. In: 2019 16th International Conference on Ubiquitous Robots (UR), pp. 81–86 (2019)

    Google Scholar 

  13. Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C.D., Tsounis, V., Fankhauser, P., Diethelm, R., Bachmann, S., Bloesch, M., Kolvenbach, H., Bjelonic, M., Isler, L., Meyer, K.: Anymal-toward legged robots for harsh environments. Adv. Robot. 31(17), 918–931 (2017)

    Article  Google Scholar 

  14. Unitree’s aliengo robot. www.unitree.com/en/aliengo/. Accessed 08 May 2023

  15. Katz, B., Di Carlo, J., Kim, S.: Mini cheetah: a platform for pushing the limits of dynamic quadruped control. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6295–6301 (2019)

    Google Scholar 

  16. Semini, C., Barasuol, V., Focchi, M., Boelens, C., Emara, M., Casella, S., Villarreal, O., Orsolino, R., Fink, G., Fahmi, S., Medrano-Cerda, G., Sangiah, D., Lesniewski, J., Fulton, K., Donadon, M., Baker, M., Caldwell, D.G.: Brief introduction to the quadruped robot HyQReal. In: Italian Conference on Robotics and Intelligent Machines (I-RIM), pp. 1–2, Rome (Oct 2019)

    Google Scholar 

  17. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ-a hydraulically and electrically actuated quadruped robot. IMechE Part I J. Syst. Control Eng. 225(6), 831–849 (2011)

    Article  Google Scholar 

  18. Unitree’s b1 robot. www.shop.unitree.com/products/unitree-b1. Accessed 08 May 2023

  19. Shin, Y.-H., Hong, S., Woo, S., Choe, J., Son, H., Kim, G., Kim, J.-H., Lee, K., Hwangbo, J., Park, H.-W.: Design of kaist hound, a quadruped robot platform for fast and efficient locomotion with mixed-integer nonlinear optimization of a gear train. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 6614–6620 (2022)

    Google Scholar 

  20. Grimminger, F., Meduri, A., Khadiv, M., Viereck, J., WĂ¼thrich, M., Naveau, M., Berenz, V., Heim, S., Widmaier, F., Flayols, T., Fiene, J., Badri-Spröwitz, A., Righetti, L.: An open torque-controlled modular robot architecture for legged locomotion research. IEEE Robot. Autom. Lett. 5(2), 3650–3657 (2020)

    Article  Google Scholar 

  21. Boston dynamics’ spot robot. www.bostondynamics.com/products/spot. Accessed 08 May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Barasuol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barasuol, V., Emre, S., Semini, C. (2024). Stair-Climbing Charts: On the Optimal Body Height for Quadruped Robots to Walk on Stairs. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation Between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-031-47269-5_24

Download citation

Publish with us

Policies and ethics