Skip to main content

Nonlinear Filter Combined Regularization of Compressed Sensing for CT Image Reconstruction

  • Conference paper
  • First Online:
International Conference on Cloud Computing and Computer Networks (CCCN 2023)

Part of the book series: Signals and Communication Technology ((SCT))

Included in the following conference series:

  • 58 Accesses

Abstract

This chapter presents a framework of nonlinear filter-based compressed sensing (CS) applied on sparse view CT image reconstruction. The conventional algorithms of quadratic-form regularization have been recognized that they fail to take the discontinuities of images into account. They may lead to over smoothed of object boundaries or fine structures in the reconstructed images. The proposed method considers sequential changes of all the local pixels in a designed window. A kind of nonlinear filter, which is median filter, bilateral filter, or non-local weighted means filter, was embedded in the CS framework, respectively. The image reconstruction problem can be treated as a cost function minimization problem. The proposed cost function consists of data fidelity term and penalty term. The penalty term, in which the nonlinear filter works, was designed and tested in ℓ0 norm, ℓ1 norm, and ℓ2 norm. Proximal splitting theory was used for constructing iterative reconstruction methods. Furthermore, we carried out calculation acceleration by constructing row-action structure. In this chapter, we applied the new method to practical medial CT images (dental, chest, and cranial images), and it showed a superior effect in image smoothing, object boundary extracting, and texture preserving. Appropriate adjustment of nonlinear filter parameters is a little complicated, and we will promote the automatic parameter setting or reducing parameter numbers in our future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Takanori, M., Takeshi, N., Yoshinori, F.,et al. 2023. RADIATION DOSE REDUCTION AT LOW TUBE VOLTAGE WITH CORONARY ARTERY BYPASS GRAFT COMPUTED TOMOGRAPHY ANGIOGRAPHY BASED ON THE CONTRAST NOISE RATIO INDEX. Radiation Protection Dosimetry 6(6),(2023).

    Google Scholar 

  2. Mansouri, M., Choukri, A., Semghouli, S., Talbi, M., Eddaoui, K., Saga, Z.: Size-specific dose estimates for thoracic and abdominal computed tomography examinations at two moroccan hospitals. Journal of Digital Imaging 35(6), 1648–1653(2022).

    Article  Google Scholar 

  3. Frandon, J., Akessoul, P., Hamard, A.,et al.: Comparison of acquisition and iterative reconstruction parameters in abdominal computed tomography-guided procedures: a phantom study. AME Publishing Company 2022(1).DOI:https://doi.org/10.21037/QIMS-21-328 (2022).

  4. Herman, GT.: Image reconstruction from projections: implementation and applications. Springer, (1979).

    Book  Google Scholar 

  5. Brenner, D. and Hall, J.: Computed Tomography – An increasing source of radiation exposure N.Engl.J.Med 357, 2277–84 (2007).

    Google Scholar 

  6. Hall, E.J., Brenner, D.j.: Cancer risks from diagnostic radiology. The British Journal of Radiology 81, 362–378 (2008).

    Google Scholar 

  7. Siltanen, S., Kolehmainen, V., Jarvenpaa, S. et al: Statistical inversion for medical X-ray tomography with few radiographs: I. general theory. Phys Med Biol 48: 1437–1463 (2003).

    Article  Google Scholar 

  8. Herman, G.T., Davidi, R.: Image reconstruction from a small number of projections. Inverse Problems 24 Article ID 045011 (2008).

    Google Scholar 

  9. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52: 489–509 (2006).

    Article  MathSciNet  Google Scholar 

  10. Pan, X., Zou, Y., Xia, D.: Image reconstruction in peripheral and central regions-of-interest and data redundancy. Med Phys 32: 673–684 (2005).

    Article  Google Scholar 

  11. Defrise, M., Noo, F., Clackdoyle, R. et al.: Truncated Hilbert transform and image reconstruction from limited tomographic data. Inverse Problems 22: 1037–1053 (2006).

    Article  MathSciNet  Google Scholar 

  12. Kudo, H., Suzuki, T., Rashed, E.A.: Image reconstruction for sparse-view CT and interior CT: Introduction to compressed sensing and differentiated backprojection. Quant Imaging Med Surg 3: 147–161 (2013).

    Google Scholar 

  13. Rampinelli, C., Origgi, D., Bellomi, M.: Low-dose CT: technique, reading methods and image interpretation. Cancer Imaging;12,548–56 (2013).

    Article  Google Scholar 

  14. Donoho, D.L.: Compressed sensing. IEEE Trans Inf Theory 52,1289–306 (2006).

    Article  Google Scholar 

  15. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Processing Magazine; 25,21–30 (2008).

    Article  Google Scholar 

  16. Ouyang, L., Solberg, T., Wang, J.: Effects of the penalty on the penalized weighted least-squares image reconstruction for low-dose CBCT. Phys Med Biol 56,5535–52 (2011).

    Article  Google Scholar 

  17. Tang, J., Nett, B., Chen, G.: Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Phys Med Biol 54,5781–804 (2009).

    Article  Google Scholar 

  18. Wang, J., Li T., Xing, L.: Iterative image reconstruction for CTCT using edge-preserving prior. Med Phys 36, 252–60 (2009).

    Article  Google Scholar 

  19. Theriault-Lauzier, P., Chen, G.: Characterization of statistical prior image constrained compressed sensing II: application to dose reduction. Med Phys 40(2), 021902 (2013).

    Article  Google Scholar 

  20. Mameuda, Y., Kudo, H.: New anatomical-prior-based image reconstruction method for PET/SPECT. Conference Record of 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference, Paper No. M23-2 (2007).

    Google Scholar 

  21. Rashed, E.A., Kudo, H.: Intensity-based Bayesian framework for image reconstruction from sparse projection data. Med Imag Tech 27, 243–251 (2009).

    Google Scholar 

  22. Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging 8, 194–202 (1989).

    Article  Google Scholar 

  23. Sauer, K., Bouman, C.: A local update strategy for iterative reconstruction from projections. IEEE Trans Signal Process 41, 534–48 (1993).

    Article  Google Scholar 

  24. Wang, J., Li, T., Lu, H., Liang, Z.: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Trans Med Imaging 25, 1272–83 (2006).

    Article  Google Scholar 

  25. Li, M., Yang, H., Kudo, H.: An accurate iterative reconstruction algorithms for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections. Phys Med Biol 47, 2599–2609 (2002).

    Article  Google Scholar 

  26. Green, P.J.: Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9, 84–93 (1990).

    Article  Google Scholar 

  27. Lange, K.: Convergence of EM image reconstruction algorithms with Gibbs priors. IEEE Trans Med Imaging 9, 439–46 (1990).

    Article  Google Scholar 

  28. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 2, 296–310 (1993).

    Article  Google Scholar 

  29. Charbonnier, P., Aubert, G., Blanc-Feraud, L., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. 1st IEEE ICIP (1993).

    Google Scholar 

  30. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992).

    Article  MathSciNet  Google Scholar 

  31. Sidky, E.Y., Kao, C.M., Pan, X.: Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J X-ray sci Tech 14, 119–39 (2006).

    Google Scholar 

  32. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53, 4777–807 (2008).

    Article  Google Scholar 

  33. Song, J., Liu, Q.H., Johnson, G.A., et al.: Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT. Med Phys 34, 4476–83 (2007).

    Article  Google Scholar 

  34. Ritschl, L., Bergner, F., Fleischmann, C., et al.: Improved total variation-based CT image reconstruction applied to clinical data. Phys Med Biol 56, 1545–61 (2011).

    Article  Google Scholar 

  35. Fahimian, B.P., Mao, Y., Cloetens, P., Miao, J.: Low-dose x-ray phase-contrast and absorption ct using equally sloped tomography. Physics in Medicine and Biology 55, 5383(2010).

    Article  Google Scholar 

  36. Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. IEEE Comput Vis Pattern Recognit 2, 60-5 (2005).

    Google Scholar 

  37. Buades, A., Coll, B., Morel J.: A review of image denoising algorithms with a new one. Multiscale Model Simul 4(2), 490–530 (2005).

    Article  MathSciNet  Google Scholar 

  38. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. SIAM J Sci Comput 42(2), 185–97 (2010).

    Article  MathSciNet  Google Scholar 

  39. Tian, Z., Jia, X., Dong, B., Lou, Y., Jiang, S.: Low-dose 4D CT reconstruction via temporal nonlocal means. Med Phys 38, 1359–65 (2011).

    Article  Google Scholar 

  40. Ma, J., Zhang, H., Gao, Y., Huang, J., Liang, Z., Feng, Q., Chen, W.: Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior. Phys Med Biol 57, 7519–42 (2012).

    Article  Google Scholar 

  41. Zhang, H., Ma, J., Wang, J., Liu, Y., Lu, H., Liang, Z.: Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Comp Med Imag Graph 38, 423–435 (2014).

    Article  Google Scholar 

  42. Clark, D., Johnson, G.A., Badea, C.T.: Denoising of 4D Cardiac Micro-CT Data Using Median-Centric Bilateral Filtration. Proc SPIE Int Soc Opt Eng 2012, 8314 (2012).

    Google Scholar 

  43. Zheng, Y., Fu, H., Au, O.K., Tai, C.L.: Bilateral normal filtering for mesh denoising. IEEE Trans Vis Comput Graph. 2011 Oct 17(10),1521–30 (2011).

    Google Scholar 

  44. Dehghannasiri, R., Shirani, S.: A novel de-interlacing method based on locally-adaptive nonlocal-means. Signals, Systems and Computers, 2012 46th Asilomar Conference on, On page(s), 1708–12 (2012).

    Google Scholar 

  45. Patel, T.R., Todd, V., Kramer, C.M.,et al.: Great Debate: Computed tomography coronary angiography should be the initial diagnostic test in suspected angina. European Heart Journal, DOI:https://doi.org/10.1093/eurheartj/ehac597 (2023).

  46. Patel, V.I., Roy, S.K., Budoff, M.J.: Coronary computed tomography angiography (ccta) vs functional imaging in the evaluation of stable ischemic heart disease. The Journal of invasive cardiology 33(5), E349–E354 (2021).

    Google Scholar 

Download references

Acknowledgments

This work is supported by scientific research project of Tianjin Education Commission (Grants No. 2021KJ012) and Innovation & Entrepreneurship Project for College Students (Grants No.202210066008).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Y., Cui, Z., Dai, H., Dong, J. (2024). Nonlinear Filter Combined Regularization of Compressed Sensing for CT Image Reconstruction. In: Meng, L. (eds) International Conference on Cloud Computing and Computer Networks. CCCN 2023. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-47100-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47100-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47099-8

  • Online ISBN: 978-3-031-47100-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics