Skip to main content

Two-stage Geometric Information Guided Image Reconstruction

  • Chapter
  • First Online:
Advances in Data Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 26))

  • 745 Accesses

Abstract

In compressive sensing, it is challenging to reconstruct image of high quality from very few noisy linear projections. Existing methods mostly work well on piecewise constant images but not so well on piecewise smooth images such as natural images, medical images that contain a lot of details. We propose a two-stage method called GeoCS to recover images with rich geometric information from very limited amount of noisy measurements. The method adopts the shearlet transform that is mathematically proven to be optimal in sparsely representing images containing anisotropic features such as edges, corners, spikes etc. It also uses the weighted total variation (TV) sparsity with spatially variant weights to preserve sharp edges but to reduce the staircase effects of TV. Geometric information extracted from the results of stage I serves as an initial prior for stage II which alternates image reconstruction and geometric information update in a mutually beneficial way. GeoCS has been tested on incomplete spectral Fourier samples. It is applicable to other types of measurements as well. Experimental results on various complicated images show that GeoCS is efficient and generates high-quality images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, 2006.

    Article  MathSciNet  Google Scholar 

  2. D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, 2006.

    Article  MathSciNet  Google Scholar 

  3. E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59–73, 2011.

    Article  MathSciNet  Google Scholar 

  4. E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489–509, 2006.

    Article  MathSciNet  Google Scholar 

  5. M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 58(6):1182–1195, 2007.

    Article  Google Scholar 

  6. R. Compton, S. Osher, and L. Bouchard. Hybrid regularization for MRI reconstruction with static field inhomogeneity correction. In 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pages 650–655. IEEE, 2012.

    Google Scholar 

  7. J. Yang, Y. Zhang, and W. Yin. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Processing, 4(2):288–297, 2010.

    Article  Google Scholar 

  8. T. Chan, A. Marquina, and P. Mulet. High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 22(2):503–516, 2000.

    Article  MathSciNet  Google Scholar 

  9. W. Guo, J. Qin, and W. Yin. A new detail-preserving regularization scheme. SIAM Journal on Imaging Sciences, 7(2):1309–1334, 2014.

    Article  MathSciNet  Google Scholar 

  10. J. F. Cai, B. Dong, S. Osher, and Z. Shen. Image restoration: total variation, wavelet frames, and beyond. Journal of the American Mathematical Society, 25(4):1033–1089, 2012.

    Article  MathSciNet  Google Scholar 

  11. D. Labate, W. Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional representation using shearlets. In Wavelets XI, volume 5914, page 59140U. International Society for Optics and Photonics, 2005.

    Google Scholar 

  12. K. Guo, G. Kutyniok, and D. Labate. Sparse multidimensional representations using anisotropic dilation and shear operators. In Wavelets and Splines, pages 189–201, Athens, GA, 2006. Nashboro Press, Brentwood, TN.

    Google Scholar 

  13. G. Easley, D. Labate, and W.-Q. Lim. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1):25–46, 2008.

    Article  MathSciNet  Google Scholar 

  14. R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 9(R2):41–76, 1975.

    MATH  Google Scholar 

  15. D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications, 2(1):17–40, 1976.

    Article  Google Scholar 

  16. T. Goldstein and S. Osher. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

    Article  MathSciNet  Google Scholar 

  17. Y. Wang and W. Yin. Sparse signal reconstruction via iterative support detection. SIAM Journal on Imaging Sciences, 3(3):462–491, 2010.

    Article  MathSciNet  Google Scholar 

  18. W. Guo and W. Yin. Edgecs: Edge guided compressive sensing reconstruction. In Visual Communications and Image Processing 2010, volume 7744, page 77440L. International Society for Optics and Photonics, 2010.

    Google Scholar 

  19. W. Guo and W. Yin. Edge guided reconstruction for compressive imaging. SIAM Journal on Imaging Sciences, 5(3):809–834, 2012.

    Article  MathSciNet  Google Scholar 

  20. A. Cai, L. Wang, H. Zhang, B. Yan, L. Li, X. Xi, and J. Li. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization. Journal of X-ray Science and Technology, 22(3):335–349, 2014.

    Article  Google Scholar 

  21. J. Rong, W. Liu, P. Gao, Q. Liao, C. Jiao, J. Ma, and H. Lu. CT reconstruction from few-views with anisotropic edge-guided total variance. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 820:54–64, 2016.

    Article  Google Scholar 

  22. S. Tong, B. Han, and J. Tang. Edge-guided TV p regularization for diffuse optical tomography based on radiative transport equation. Inverse Problems, 34(11):115009, 2018.

    Google Scholar 

  23. E. J. Candès and D. L. Donoho. Ridgelets: A key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1760):2495–2509, 1999.

    Article  MathSciNet  Google Scholar 

  24. E. J. Candès and D. L. Donoho. Curvelets: a surprisingly effective nonadaptive representation for objects with edges. In Curve and Surface Fitting: Saint-Malo 1999, Nashville, TN, 2000. Vanderbilt Univ. Press.

    Google Scholar 

  25. M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12):2091–2106, 2005.

    Article  Google Scholar 

  26. S. Häuser and G. Steidl. Fast finite shearlet transform. arXiv:1202.1773, 2012.

    Google Scholar 

  27. G. R. Easley, D. Labate, and F. Colonna. Shearlet-based total variation diffusion for denoising. IEEE Transactions on Image processing, 18(2):260–268, 2008.

    Article  MathSciNet  Google Scholar 

  28. F. Wang, S. Wang, X. Hu, and C. Deng. Compressive sensing of image reconstruction based on shearlet transform. In Mechanical Engineering and Technology, pages 445–451. Springer, 2012.

    Google Scholar 

  29. E. T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. CAAM TR07-07, Rice University, 43:44, 2007.

    Google Scholar 

  30. E. Esser. Applications of lagrangian-based alternating direction methods and connections to split bregman. CAM report, 9:31, 2009.

    Google Scholar 

  31. R. Glowinski. Lectures on numerical methods for non-linear variational problems. Springer Science & Business Media, 2008.

    Google Scholar 

  32. M. Fortin and R. Glowinski. Chapter iii on decomposition-coordination methods using an augmented lagrangian. In Studies in Mathematics and Its Applications, volume 15, pages 97–146. Elsevier, 1983.

    Google Scholar 

  33. P. Coupé, P. Hellier, C. Kervrann, and C. Barillot. Bayesian non local means-based speckle filtering. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 1291–1294. IEEE, 2008.

    Google Scholar 

  34. Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1∕k 2). Doklady AN SSSR (translated as Soviet Mathematics Doklady), 269:543–547, 1983.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Collaboration Workshop for Women in Data Science and Mathematics held at ICERM during July 29–August 2, 2019. Qin is supported by the NSF grant DMS-1941197, and Guo is supported by the NSF grant DMS-1521582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Authors and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, J., Guo, W. (2021). Two-stage Geometric Information Guided Image Reconstruction. In: Demir, I., Lou, Y., Wang, X., Welker, K. (eds) Advances in Data Science. Association for Women in Mathematics Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-79891-8_1

Download citation

Publish with us

Policies and ethics