Skip to main content

Markov Random Fields and Random Walks

  • Chapter
  • First Online:
Statistical Rock Physics

Chapter Highlights

Markov Random Fields, which are spatial generalizations of Markov Chains in time, are mainly used in geophysical inverse problems and geologic image processing (Table 10.1). Discrete-time and continuous-time Random Walk models (Sect. 10.2, and Table 10.2) are among the most popular petrophysical simulation tools. Three important applications are discussed in details: anomalous diffusion, the NMR response of fluids in porous rocks, and an attempt (of Ioannidis et al. 1997) to derive the formation factor F in Archie’s equation. Mathematical details (such as: Derivation of the Gibbs Distribution; Proof of the Hammersley-Clifford Theorem; Polya’s Theorem and its proof; and Partial Differential Equations governing Continuous Time Random Walks) are discussed in appendices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Swoboda P (2019) Bottleneck potentials in Markov random fields. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3175–3184

    Google Scholar 

  • Abou-Saleh K, Dweik J, Haidar Y, Ghaddar A (2019) Solving diffusion time in heterogeneous microscale rock matrix by 3D computations: non-Fickian dispersion observed in porous media. J Geosci Environ Protect 7:42–52

    Google Scholar 

  • Abramowitz M, Stegun IA (eds) (1965) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Anwar S, Cortis A, Sukop MC (2007) Lattice Boltzmann Simulation of solute transport in heterogeneous porous media with conduits to estimate macroscopic continuous time random walk model parameters. Progr Comput Fluid Dyn 8:213–221

    Article  Google Scholar 

  • Arns CH, Sheppard AP, Sok RM, Knackstedt MA (2005) NMR petrophysical predictions on digitized core materials. In: SPWLA 46th annual logging symposium, New Orleans, Lousiana, USA, 2005: Paper MMM

    Google Scholar 

  • Averintsev MB (1970) On a method of describing complete parameter fields. Problemy Peredachi Informatsii 6:100–109

    Google Scholar 

  • Baeumer B, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Subordinated advection-dispersion equation for contaminant transport. Water Resour Res 37(6):1543–1550

    Article  Google Scholar 

  • Barthelemy P, Bertolotti J, Wiersma DA (2008) Lévy flight for light. Nature 453:495–498

    Article  CAS  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Bechtold M, Vanderborght J, Ippisch O, Vereecken H (2011) Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water content. Water Resour Res 47(10):W1052

    Article  Google Scholar 

  • Bender EA, Goldman JR (1975) On the applications of Möbius inversion in combinatorial analysis. Am Math Mon 82(8):789–803

    Google Scholar 

  • Benson DA, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of Lévy motion. Water Resour ReS 36(6):1413–1423

    Article  Google Scholar 

  • Berger M (2010) Geometry revealed: a Jacob’s ladder to modern higher geometry. Springer-Verlag, Berlin-Heidelberg

    Book  Google Scholar 

  • Bergman DJ, Dunn K-J, Schwartz LM, Mitra PP (1995) Self-diffusion in a periodic porous medium: a comparison of different approaches. Phys Rev E 51:3393–3400

    Article  CAS  Google Scholar 

  • Berkowitz B, Scher H (1995) On characterization of anomalous-dispersion in porous and fractured media. Water Resour Res 3:1461–1466

    Article  Google Scholar 

  • Berkowitz B, Klafter J, Metzler R, Scher H (2002) Physical pictures of transport in heterogeneous media: advection-dispersion, random walk and fractional derivative formulations. Water Resour Res 38(10):1191

    Article  Google Scholar 

  • Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations. Rev Geophys 44(2): Article no 608

    Google Scholar 

  • Besag JE (1972) Nearest-neighbor systems and the auto-logistic model for binary data. J R Stat Soc B 34:75–83

    Google Scholar 

  • Besag JE (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36:192–221

    Google Scholar 

  • Besag J (1975) Statistical analysis of non-lattice data. The Statistician 24:179–195

    Article  Google Scholar 

  • Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc 48(3):259–302

    Google Scholar 

  • Bijeljic B, Blunt MJ (2006) Pore-scale modeling of transverse dispersion in porous media. Water Resources Res 43(12)

    Google Scholar 

  • Bijeljic B, Mostaghimi P, Blunt MJ (2011) Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys Rev Lett 107:204502

    Article  Google Scholar 

  • Bijeljic B, Raeini A, Mostaghimi P, Blunt MJ (2013) Predictions of non-Fickian solute transport in different clases of porous media using direct simulation on pore-scale images. Phys Rev E 87:013011

    Article  Google Scholar 

  • Biskup M (2011) Recent progress on the random conductance model. Probab Surv 8:294–373

    Google Scholar 

  • Boano F, Packman AI, Cortis A, Revelli R, Ridolfi L (2007) A continuous time random walk approach to the stream transport of solutes. Water Resour Res 43:W10425

    Article  Google Scholar 

  • Bodin J (2015) From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms. Water Resour Res 51(3):1860–1871

    Article  Google Scholar 

  • Bodin J, Delay F, de Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 2. Mathematical formalism. Hydrogeol J 11434–454

    Google Scholar 

  • Bodin J, Porel G, Delay F, Ubertosi F, Bernard S, de Dreuzy J-R (2007) Simulation and analysis of solute transport in 2D fracture/pipe networks. J Contam Hydrol 89(1–2):1–28

    Article  CAS  Google Scholar 

  • Brown R (1828) A brief account of microscopical observations in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and the general existence of active molecules in organic and inorganic bodies. Philos Mag 4:161–173

    Article  Google Scholar 

  • Brownstein KR, Tarr CE (1979) Importance of classical diffusion in NMR studies of water in biological cell. Phys Rev A 19(6):2446–2453

    Article  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  • Chen J, Michael Hoversten G (2012) Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields. Geophysics 77(1):R65–R80

    Google Scholar 

  • Chen Z, Pan X, Chen X, Yang X, Xin X, Su L (2019) An object-based Markov random field model with anisotropic penalty for semantic segmentation of high spatial resolution remote sensing imagery. Remote Sens 11(23):2878

    Google Scholar 

  • Cipra BA (1987) An introduction to the Ising model. Amer Math Monthly 94:937–959

    Article  Google Scholar 

  • Clifford P (1990) Markov random fields in statistics. In: Grimmett GR, Welsh DJA (eds) Disorder in physical systems: a volume in honour of John M. Hammersley. Oxford University Press, Oxford

    Google Scholar 

  • Codling Edward A, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5:813–834

    Google Scholar 

  • Cole KD, Beck JV, Haji-Sheikh A, Litkouhi B (2011) Heat conduction using Green’s functions, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Cortis A, Berkowitz B (2004) Anomalous transport in “classical” soil and sand columns. Soil Sci Soc Am J 68:1539–1548

    Article  CAS  Google Scholar 

  • Cortis A, Berkowitz B (2005) Computing ‘“anomalous”’ contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43(6):947–950

    Article  CAS  Google Scholar 

  • Cortis A, Birkholzer J (2008) Continuous time random walk analysis of solute transport in fractured porous media. Water Resour Res 44:W0641

    Article  Google Scholar 

  • Cortis A, Ghezzehei TA (2007) On the transport of emulsions in porous media. J Colloid Interface Sci 313(1):1–4

    Article  CAS  Google Scholar 

  • Cortis A, Knudby C (2006) A continuous time random walk approach to transient flow in heterogeneous porous media. Water Resour Res 42(10):W10201

    Article  Google Scholar 

  • Cortis A, Harter T, Hou L, Atwill ER, Packman A, Green P (2006) Transport of Cryptosporidium parvum in porous media: long‐term elution experiments and continuous time random walk filtration modeling. Water Resour Res 42(12):W12S13

    Google Scholar 

  • Coscoy S, Huguet E, Amblard F (2007) Statistical analysis of sets of random walks: how to resolve their generating mechanism. Bull Math Biol 6:2467–2492

    Article  Google Scholar 

  • Cvetkovic V, Fiori A, Dagan G (2014) Solute transport in aquifers of arbitrary variability: a time-domain random walk formulation. Water Resour Res 50(7):5759–5773

    Article  CAS  Google Scholar 

  • Davey BA, Priestley HA (2002) Introduction to lattices and order, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Deaconu M, Lejay A (2006) A random walk on rectangles algorithm. Methodol Comput Appl Probab 8:135–151

    Article  Google Scholar 

  • Delay F, Bodin J (2001) Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys Res Lett 28(21):4051–4054

    Article  Google Scholar 

  • Delay F, Porel G, Sardini P (2002) Modelling diffusion in a heterogeneous rock matrix with a time-domain Lagrange method and an inversion procedure. CR Geoscience 334:967–973

    Article  CAS  Google Scholar 

  • Delay F, Ackerer P, Danquigny C (2005) Simulating solute transport in porous or fractured formations using random walk particle tracking: a review. Vadose Zone J 4(2):360–379

    Article  Google Scholar 

  • Dentz M, Cortis A, Scher H, Berkowitz B (2004) Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport. Adv Water Resour 27:155–173

    Article  CAS  Google Scholar 

  • Dentz M, Gouze P, Russian A, Dweik J, Delay F (2012) Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach. Adv Water Resour 49:13–22

    Article  Google Scholar 

  • Dentz M, Icardi M, Hidalgo JJ (2018) Mechanisms of dispersion in a porous medium. J Fluid Mech 841:851–882

    Article  CAS  Google Scholar 

  • Derin H, Elliot AH (1987) Modeling and segmentation of noisy and textured images using Gibbs random field. IEEE Trans Pattern Anal Mach Intell 9:39–55

    Article  CAS  Google Scholar 

  • De W Van Siclen C (1999a) Walker diffusion method for calculation of transport properties of composite materials. Phys Rev E 59(3):2804–2807

    Google Scholar 

  • De W Van Siclen C (1999b) Anomalous walker diffusion through composite systems. J Phys a: Math Gen 3:5763–5771

    Google Scholar 

  • De W Van Siclen C (2021) Random walker derivation of Archie's law. arXiv: 2103.14099 [cond-mat.stat-mech]

    Google Scholar 

  • Dobrushin PL (1968) The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab Appl 13(2):197–224

    Article  Google Scholar 

  • Duffy KJ, Cummings PT, Ford RM (1995) Random walk calculations for bacterial migration in porous media. Biophys J 68(3):800–806

    Article  CAS  Google Scholar 

  • Durrett R (2019) Probability: theory and examples, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549–560

    Article  CAS  Google Scholar 

  • Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Phys 19:371–381

    Article  CAS  Google Scholar 

  • Emmanuel S, Berkowitz B (2007) Continuous time random walks and heat transfer in porous media. Transp Porous Media 67(3):413–430

    Article  Google Scholar 

  • Fleury M, Bauer D, Néel M (2015) Modeling of super-dispersion in unsaturated porous media using NMR propagators. Microporous Mesoporous Mater 205:75–78

    Article  CAS  Google Scholar 

  • Forbes F, Peyrard N (2003) Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans Pattern Anal Mach Intell 25:1089–1101

    Article  Google Scholar 

  • Gautestad Arild O (2013) Lévy meets Poisson: a statistical artifact may lead to erroneous recategorization of Lévy walk as Brownian motion. Am Nat 181(3):440–450

    Google Scholar 

  • Geiger S, Cortis WA, Birkholzer JT (2010) Upscaling solute transport in naturally fractured porous media with the continuous time random walk method. Water Resour Res 46(12):W12530

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans PAMI 6:721–741

    Article  CAS  Google Scholar 

  • Goldstein S (1951) On diffusion by discontinuous movements, and on the telegraph equation. J Mech Appl Math 6:129–156

    Article  Google Scholar 

  • Gouze P, Melean Y, Le Borgne T, Dentz M, Carrera J (2008) Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour Res 44(11):W11416–W11435

    Article  Google Scholar 

  • Grimmett GR (1973) A theorem about random fields. Bull Lond Math Soc 5(1):81–84

    Article  Google Scholar 

  • Grimmett G, Welsh D (2007) John Michael Hammersley 21 March 1920–2 May 2004. Biogr Mems Fell R Soc 53:163–183

    Google Scholar 

  • Guillon V, Fleury M, Bauer D, Néel MC (2013) Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys Rev E 87(4)

    Google Scholar 

  • Guillon V, Bauer D, Fleury M, Néel MC (2014) Computing the longtime behaviour of NMR propagators in porous media using a pore network random walk model. Transp Porous Media 101(2):251–267

    Article  CAS  Google Scholar 

  • Guyon X, Hardouin C (2002) Markov chain Markov field dynamics: models and statistics. Stat A J Theor Appl Stat 36(4):339–363

    Google Scholar 

  • Haggerty R, Harvey CF, Schwerin CF, Meigs LC (2004) What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results. Water Resour Res 40:W01510

    Article  Google Scholar 

  • Hammersley JM, Clifford P (1971) Markov fields on finite graphs and lattices. Unpublished. http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf

  • Hidajat I, Singh M, Cooper J, Mohanty KK (2002) Permeability of porous media from simulated NMR response. Transp Porous Media 48(2):225–247

    Article  Google Scholar 

  • Holtz O (2014) My random walks with Pólya and Szegő. Institute for Advanced Study. The Institute Letter, Summer. https://www.ias.edu/publications/institute-letter/institute-letter-summer-2014

  • Hoteit H, Mose R, Younes A, Lehmann F, Ackerer P (2002) Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Math Geol 34(4):435–456

    Article  Google Scholar 

  • Hwang C-O, Given JA, Mascagni M (2000) On the rapid estimation of permeability for porous media using Brownian motion paths. Phys Fluids 12(7):1699–1709

    Article  CAS  Google Scholar 

  • Ioannidis MA, Kwiecen MJ, Chatzis I (1997) Electrical conductivity and percolation aspects of statistically homogeneous porous media. Transp Porous Media 29(1):61–83

    Article  Google Scholar 

  • Ising E (1925) Beitrag zur Theorie des Ferromagnetismus. Zeitschrift Für Physik A Hadrons Nuclei 31:253–258

    CAS  Google Scholar 

  • Jin G, Carlos T-V, Emmanuel T (2009) Comparison of NMR simulations of porous media derived from analytical and voxelized representations. J Mag Reson 200:313–320

    Google Scholar 

  • Kac M (1974) A stochastic model related to the telegraphers equation. Rocky Mt J Math 4:497–509

    Article  Google Scholar 

  • Kang PK, Anna P, Nunes JP, Bijeljic B, Blunt MJ, Juanes R (2014) Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media. Geophys Res Lett 410(17):6184–6190

    Article  Google Scholar 

  • Kim IC, Torquato S (1990) Determination of the effective conductivity of heterogeneous media by Brownian motion simulation. J Appl Phys 68:3892–3903

    Article  Google Scholar 

  • Kim IC, Torquato S (1992) Effective conductivity of suspensions of overlapping spheres. J Appl Phys 71(6):2727–2735

    Article  CAS  Google Scholar 

  • Kindermann R, Snell JL (1980) Markov random fields and their applications. American Mathematical Society, Providence

    Book  Google Scholar 

  • Kinzelbach W (1988) The random walk method in pollutant transport simulation. In: Custodio E, Gurgui A, Ferreira JPL (eds) Groundwater flow and quality modelling. NATO ASI series, vol 224. Springer, Dordrecht, pp 227–245

    Google Scholar 

  • Kinzelbach W, Uffink G (1991) The random walk method and extensions in groundwater modelling. In: Bear J, Corapcioglu MY (eds) Transport processes in porous media. NATO ASI series, vol 202. Springer, Dordrecht

    Google Scholar 

  • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge

    Google Scholar 

  • Korvin G (2021) Statistical rock physics. In: Daya Sagar B, Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of mathematical geosciences. Encyclopedia of earth sciences series. Springer, Cham

    Google Scholar 

  • Korvin G, Lux I (1972) An analysis of the propagation of sound waves in porous media by means of the Monte Carlo method. Geophys Trans 21(3–4):91–106

    Google Scholar 

  • Kuwatani T, Nagata K, Okada M, Toriumi M (2012) Precise estimation of pressure-temperature paths from zoned minerals using Markov random field modeling: theory and synthetic inversion. Contrib Mineral Petrol 163(3):547–562

    Article  CAS  Google Scholar 

  • Kuwatani T, Nagata K, Okada M, Toriumi M (2014) Markov random field modeling for mapping geofluid distributions from seismic velocity structures. Earth, Planets Space 66(1):1–9

    Article  Google Scholar 

  • Landau LD, Mikhailovich LE (1980) Statistical physics. Course of theoretical physics, vol 5, 3rd ed. Pergamon Press, Oxford

    Google Scholar 

  • Landereau P, Noetinger B, Quintard M (2001) Quasi steady two equation models for transport in fractured porous media. Adv Water Resour 24(8):863–876

    Article  Google Scholar 

  • Lawler GE (2010) Random walk and the heat equation. Student mathematical library, vol 55. American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  • Le Borgne T, Bolster D, Dentz M, de Anna P, Tartakovsky A (2011) Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach. Water Resour Res 47(12):W12538

    Google Scholar 

  • Lévy P (1954) Théorie de l’Addition des Variables Aléatoires. Gauthier-Villars, Paris

    Google Scholar 

  • Lévy P (1965) Processus stochastiques et mouvement Brownien. Gauthier-Villars, Paris

    Google Scholar 

  • Li Z, Wang X, Wang H, Liang RY (2016) Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field. Eng Geol 201:106–122

    Article  Google Scholar 

  • Lovász L (1996) Random walks on graphs: a survey. In: Miklós D et al (eds) Combinatorics: Paul Erdős is eighty, vol 2, Budapest. János Bolyai Math Soc 353–397

    Google Scholar 

  • Luban M, Staunton LP (1988) An efficient method for generating a uniform distribution of points within a hypersphere. Comput Phys 2(6):55–60

    Google Scholar 

  • Majoros WH (2007) Conditional random fields. Online supplement to: Methods for computational gene prediction. Cambridge University Press

    Google Scholar 

  • Mandelbrot B (1977) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • McCarthy JF (1990) Effective permeability of sandstone-shale reservoirs by a random walk method. J Phys A Math Gener 23(9):L445

    Google Scholar 

  • McCarthy JF (1991) Analytical models of the effective permeability of sand-shale reservoirs. Geophys J Int 105(2):513–527

    Article  Google Scholar 

  • McCarthy JF (1993a) Continuous-time random walks on random media. J Phys A Math Gener 26(11):2495–2503

    Google Scholar 

  • McCarthy JF (1993b) Reservoir characterization: efficient random-walk methods for upscaling and image selection. In: SPE Asia pacific oil and gas conference, 8–10 February, Singapore: 25334

    Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691

    Article  CAS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Google Scholar 

  • Metzler R, Klafter J, Sokolov IM (1998) Anomalous transport in external fields: continuous time random walks and fractional diffusion equations extended. Phys Rev E 58(2):1621–1633

    Article  CAS  Google Scholar 

  • Metzler R (2000) Generalized Chapman-Kolmogorov equation: a unifying approach to the description of anomalous transport in external fields. Phys Rev E 62(5):6233–6245

    Article  CAS  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37(31):R161

    Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York, NY

    Google Scholar 

  • Moussouris J (1974) Gibbs and Markov random fields with constraints. J Statist Phys 10:11–33

    Article  Google Scholar 

  • Nan T, Wu J, Li K, Jiang J (2019) Permeability estimation based on the geometry of pore space via random walk on grids. Geofluids. Article ID 924020

    Google Scholar 

  • Néel MC, Rakotonasyl SH, Bauer D, Joelson M, Fleury M (2011) All order moments and other functionals of the increments of some non-Markovian processes. J Stat Mech Theory Exp 2011:P02006

    Article  Google Scholar 

  • Néel MC, Bauer D, Fleury M (2014) Model to interpret pulsed-field-gradient NMR data including memory and superdispersion effects. Phys Rev E 89(6)

    Google Scholar 

  • Noetinger B, Estebenet T (2000) Up-scaling of double porosity fractured media using continuous-time random walks methods. Transp Porous Media 39(3):315–337

    Article  CAS  Google Scholar 

  • Noetinger B, Estebenet T, Landereau P (2001a) A direct determination of the transient ex-change term of fractured media using a continuous time random walk method. Transp Porous Media 44(3):539–557

    Article  Google Scholar 

  • Noetinger B, Estebenet T, Quintard M (2001b) Up scaling of fractured media: equivalence between the large scale averaging theory and the continuous time random walk method. Transp Porous Media 43(3):581–596

    Article  Google Scholar 

  • Noetinger B, Roubinet D, Russian A, Le Borgne T, Delay F, Dentz M, de Dreuzy J-R, Gouze Ph (2016) Random Walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale. Transp Porous Med 115:345–385

    Google Scholar 

  • Norberg T, Rosén L, Baran A, Baran S (2002) On modelling discrete geological structures as Markov random fields. Math Geol 34:63–77

    Article  Google Scholar 

  • O’Brien GS, Bean CJ, McDermott F (2003a) Numerical investigations of passive and reactive flow through generic single fractures with heterogeneous permeability. Earth Planet Sci Lett 213(3–4):271–284

    Article  Google Scholar 

  • O’Brien GS, Bean CJ, McDermott F (2003b) A numerical study of passive transport through fault zones. Earth Planet Sci Lett 214(3–4):633–643

    Article  Google Scholar 

  • Olayinka S, Ioannidis MA (2004) Time-dependent diffusion and surface-enhanced relaxation in stochastic replicas of porous rock. Transp Porous Media 54(3):273–295

    Article  Google Scholar 

  • Oppenheim I, Shuler KE, Weiss GH (1977) Stochastic processes in chemical phyics: the master equation. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Øren PE, Antonsen F, Rueslåtten HG, Bakke S (2002) Numerical simulations of NMR responses for improved interpretations of NMR measurements in reservoir rocks. In: SPE annual technical conference and exhibition, San Antonio, Texas, 2002: SPE 77398

    Google Scholar 

  • Pearson K (1905) The problem of the random walk. Nature 1905(July 27) 72:294

    Google Scholar 

  • Perrin J (1909) Mouvement Brownien et réalité moléculaire. Ann Chim Phys VIII(18):5–114

    Google Scholar 

  • Polya G (1921) ̈Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math Annalen 84:149–160

    Article  Google Scholar 

  • Potts RB (1952) Some generalized order-disorder transformations. Math Proc Cambridge Philos Soc 48(1):106–109

    Article  Google Scholar 

  • Preston CJ (1973) Generalized Gibbs states and Markov random fields. Adv Appl Probab 5(2):242–261

    Article  Google Scholar 

  • Ramakrishnan TS, Schwartz LM, Fordham EJ, Kenyon WE, Wilkinson DJ (1999) Forward models for nuclear magnetic resonance in carbonate rocks. Log Anal 40(4):260–270

    Google Scholar 

  • Rapp BE (2017) Microfluidics: modelling, mechanics and mathematics. Elsevier, Amsterdam

    Google Scholar 

  • Rayleigh (J.W. Strutt) (1880) On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos Mag 10:73

    Google Scholar 

  • Rayleigh (J.W. Strutt) (1905) The problem of the random walk. Nature 72:31

    Google Scholar 

  • Rayleigh (J.W. Strutt) (1945) The theory of sound, volume 1, section 42a. Second edn., revised and enlarged. Dover Publications, New York

    Google Scholar 

  • Räss L, Kolyukhin D, Minakov A (2019) Efficient parallel random field generator for large 3-D geophysical problems. Comput Geosci 131:158–169

    Google Scholar 

  • Regier M, Schuchmann HP (2005) Monte Carlo simulations of observation time-dependent self-diffusion in porous media models. Transp Porous Media 59(1):115–126

    Article  Google Scholar 

  • Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574

    Article  Google Scholar 

  • Rimstad K, Omre H (2010) Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics 7:R93–R108

    Article  Google Scholar 

  • Robinet JC, Sardini P, Delay F, Hellmuth KH (2007) The effect of rock matrix heterogeneities near fracture walls on the residence time distribution (RTD) of solutes. Transp Porous Media 72(3):393–408

    Article  Google Scholar 

  • Rota GC (1964) On the foundations of combinatorial theory, I. Theory of Mobius functions. Zeitschr Wahrsch Theorie Verw Geb 2:340–368

    Article  Google Scholar 

  • Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Salomão MC, Remacre AZ (2001) The use of discrete Markov random fields in reservoir characterization. J Petrol Sci Eng 32(2–4):257–264

    Article  Google Scholar 

  • Sardini P, Delay F, Hellmuth K-H (2003) Interpretation of out-diffusion experiments on crystalline rocks using random walk modelling. J Contam Hydrol 61:339–350

    Article  CAS  Google Scholar 

  • Sardini P, Robinet J-C, Siitari-Kappi M (2007) Direct simulation of heterogeneous diffusion and inversion procedure applied to an out-diffusion experiment. Test case of Palmetto granite. J Contam Hydrol 93:21–37

    Article  CAS  Google Scholar 

  • Scher H, Lax M (1973) Stochastic transport in a disordered solid. I. Theory. Phys Rev B 7(10):4491

    Article  CAS  Google Scholar 

  • Schumer R, Benson DA, Meerschaert MM (2003) Fractal mobile/immobile solute transport. Water Resour Res 39(10):1296

    Article  Google Scholar 

  • Schwartz LM, Banavar JR (1989) Transport properties of disordered continuum systems. Phys Rev B 39:11965–11970

    Article  CAS  Google Scholar 

  • Sen PN, Schwartz LM, Mitra PP, Halperin BI (1994) Surface relaxation and the long-time diffusion coefficient in porous media: periodic geometries. Phys Rev B 49(1):215–225

    Article  CAS  Google Scholar 

  • Shlesinger MF (1996) Random processes. In: Encyclopedia of applied physics, vol 16. Wiley, Hoboken, N.J.

    Google Scholar 

  • Shlesinger MF (2003) Supra-diffusion. In: Ranagarajan G, Ding M (eds) Processes with long-range correlations. Springer, Berlin, pp 139–147

    Google Scholar 

  • Shuler KE, Mohanty U (1981) Random walk properties from lattice bond enumeration: anisotropic diffusion in lattices with periodic and randomly distributed scatterers. Proc Natl Acad Sci USA 78(11):6576–6578

    Google Scholar 

  • Simonov NA, Mascagni M (2004) Random Walk algorithms for estimating effective properties of digitized porous media. Monte Carlo Methods and Appl. 10(3–4):599–608

    Google Scholar 

  • Solberg AHS, Taxt T, Jain AK (1996) A Markov random field model for classification of multisource satellite imagery. IEEE Trans Geosci Remote Sens 34:100–113

    Article  Google Scholar 

  • Soulaine C, Girolami L, Arbaret L, Roman S (2021) Digital Rock Physics: computation of hydrodynamic dispersion. Oil & Gas Sci Technol-Revue d’IFP Energies Nouvelles 76:51

    Article  Google Scholar 

  • Spitzer F (1964) Principles of random walk. Graduate texts in mathematics. Springer New York, New York

    Google Scholar 

  • Spitzer F (1971) Markov random fields and Gibbs ensembles. Am Math Mon 78:142–154

    Google Scholar 

  • Stalgorova E, Babadagli T (2012) Field-scale modeling of tracer injection in naturally fractured reservoirs using the random-walk particle-tracking simulation. SPE J 17(2):580–592

    Article  CAS  Google Scholar 

  • Steinsland I (2003) Parallel sampling of GMRFs and geostatistical GMRF models. Norges Teknisk-Naturvitenskapelige Universitet Preprint Statistics no. 7/2003

    Google Scholar 

  • Strauss DJ (1975) Analyzing binary lattice data with the nearest-neighbor property. J Appl Prob 12:702–712

    Article  Google Scholar 

  • Strauss DJ (1977) Clustering on coloured lattices. J Appl Prob 14:135–143

    Article  Google Scholar 

  • Thomson W (Lord Kelvin) (1854–1855) On the theory of the electric telegraph. Proc R Soc Lond 7:382–399

    Google Scholar 

  • Tjelmeland H, Luo X, Fjeldstad T (2019) A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image. Geophys Prospect 67:609–623

    Article  Google Scholar 

  • Tobochnik J (1990) Efficient random walk algorithm for computing conductivity in continuum percolation systems. Comput Phys IEEE Comput Sci Eng 4(2):181–184

    Google Scholar 

  • Tolpekin VA, Stein A (2009) Quantification of the effects of land-cover-class spectral separability on the accuracy of Markov-random-field-based superresolution mapping. IEEE Trans Geosci Remote Sens 47:3283–3297

    Article  Google Scholar 

  • Torquato S (1990) Relationship between permeability and diffusion-controlled trapping constant of porous media. Phys Rev Lett 64(22):2644–2646

    Article  CAS  Google Scholar 

  • Toumelin E, Torres-Verdín C, Chen S (2003) Modeling of multiple echo-time NMR measurements for complex pore geometries and multiphase saturations. SPE Reservoir Eval Eng 6(4):234–243

    Article  CAS  Google Scholar 

  • Toumelin E, Torres-Verdín C, Sun B, Dunn K-J (2007) Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries. J Magn Reson 188:83–96

    Google Scholar 

  • Uçan ON, Muhittin Albora A (2009) Markov random field image processing applications on ruins of the Hittite Empire. Near Surface Geophys 7(347):111–122

    Article  Google Scholar 

  • Uçan ON, Sen A, Albora AM, Ozmen A (2000) A new gravity anomaly separation approach: differential Markov random field (DMRF). Electron Geosci 5:1–13

    Google Scholar 

  • Uçan ON, Muhittin Albora A, Aydoğan D (2004) On the use of Markov Random Field in geophysical applications: Gelibolu Peninsula. İstanbul Üniv Müh Fak Yerbilimleri Dergisi 17(1):35–46

    Google Scholar 

  • Ulvmoen M, Omre H (2010) Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1-methodology. Geophysics 75:R21–R35

    Article  Google Scholar 

  • Valckenborg RME, Huinink HP, Sande JJvd, Kopinga K (2002) Random-walk simulations of NMR dephasing effects due to uniform magnetic-field gradients in a pore. Phys Rev E 65:021306

    Google Scholar 

  • Valfouskaya A, Adler PM, Thovert J-F, Fleury M (2006) Nuclear magnetic resonance diffusion with surface relaxation in porous media. J Colloid Interface Sci 2951:188–201

    Article  Google Scholar 

  • Wang H, Wellmann JF, Li Z, Wang X, Liang RY (2017) A segmentation approach for stochastic geological modeling using hidden Markov random fields. Math Geosci 49:145–177

    Article  CAS  Google Scholar 

  • Wang X, Li Z, Wang H, Rong Q, Liang RY (2016) Probabilistic analysis of shield-driven tunnel in multiple strata considering stratigraphic uncertainty. Struct Saf 62:88–100

    Article  Google Scholar 

  • Weeks ER, Urbach JS, Swinney HL (1996) Anomalous diffusion in asymmetric random walks with a quasigeostrophic flow example. Physica D 97:291–310

    Article  Google Scholar 

  • Wilkinson DJ, Johnson DL, Schwartz LM (1991) Nuclear magnetic relaxation in porous media: the role of the mean lifetime τ(ρ, D). Phys Rev B 44:4960–4973

    Article  CAS  Google Scholar 

  • Woynar R (2013) Random walk, diffusion and wave equation. Acta Phys Pol, B 44(5):1067–1084

    Google Scholar 

  • Wu Y, Liu Q, Chan AHC, Liu H (2017) Implementation of a time-domain random-walk method into a discrete element method to simulate nuclide transport in fractured rock masses. Geofluids 2017:5940380

    Google Scholar 

  • Xie H, Pierce LE, Ulaby FT (2002) SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans Geosci Remote Sens 40:2196–2212

    Article  Google Scholar 

  • Yang XR, Wang Y (2019) Ubiquity of anomalous transport in porous media: numerical evidence, continuous time random walk modelling, and hydrodynamic interpretation. Sci Rep 9:4601

    Article  Google Scholar 

  • Zhang X, Crawford JW, Deeks LK, Stutter MI, Bengough AG, Young IM (2005) A mass balance based numerical method for the fractional advection-dispersion equation: theory and application. Water Resour Res 41:W07029

    Article  Google Scholar 

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    Article  CAS  Google Scholar 

  • Zimmermann S, Koumoutsakos P, Kinzelbach W (2001) Simulation of pollutant transport using a particle method. J Comput Phys 173(1):322–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Korvin .

Appendix

Appendix

See Tables 10.1 and 10.2.

Table. 10.1 Some important applications of random Markov fields
Table. 10.2 Some applications of random walk models

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korvin, G. (2024). Markov Random Fields and Random Walks. In: Statistical Rock Physics. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-46700-4_10

Download citation

Publish with us

Policies and ethics