Skip to main content

Semisolid Extrusion Printing and 3D Bioprinting

  • Chapter
  • First Online:
3D Printing

Abstract

This chapter provides an insightful overview of two transformative technologies in the realm of additive manufacturing: semisolid extrusion printing (SEP) and 3D bioprinting. Semisolid extrusion printing, a novel technique, has emerged as a promising approach for fabricating complex structures with intricate geometries using viscoelastic materials. On the other hand, 3D bioprinting revolutionizes tissue engineering and regenerative medicine by enabling the precise deposition of living cells and biomaterials to fabricate functional constructs. This review delves into the principles, advantages, and challenges associated with both technologies, exploring their applications in diverse fields, including pharmaceuticals, medical devices, and tissue engineering. By addressing critical aspects such as material selection, process optimization, and regulatory considerations, this chapter illuminates the significant contributions of semisolid extrusion printing and 3D bioprinting outlining the evolution of additive manufacturing and its profound impact on healthcare and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  CAS  PubMed  Google Scholar 

  2. Vatanparast S, Boschetto A, Bottini L, Gaudenzi P. New trends in 4D printing: a critical review. Appl Sci. 2023;13:7744. https://doi.org/10.3390/app13137744.

    Article  CAS  Google Scholar 

  3. Alqahtani AA, Ahmed MM, Mohammed AA, Ahmad J. 3D printed pharmaceutical systems for personalized treatment in metabolic syndrome. Pharmaceutics. 2023:15.

    Google Scholar 

  4. Robles-Martinez P, Xu X, Trenfield SJ, Awad A, Goyanes A, Telford R, Basit AW, Gaisford S. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11:274. https://doi.org/10.3390/pharmaceutics11060274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bácskay I, Ujhelyi Z, Fehér P, Arany P. The evolution of the 3D-printed drug delivery systems: a review. Pharmaceutics. 2022;14:1312. https://doi.org/10.3390/pharmaceutics14071312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thakkar R, Pillai AR, Zhang J, Zhang Y, Kulkarni V, Maniruzzaman M. Novel on-demand 3-dimensional (3-d) printed tablets using fill density as an effective release-controlling tool. Polymers (Basel). 2020;12:1872. https://doi.org/10.3390/POLYM12091872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149–73. https://doi.org/10.1146/annurev-chembioeng-073009-100847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. J Control Release. 2021;332:367–89. https://doi.org/10.1016/J.JCONREL.2021.02.027.

    Article  PubMed  Google Scholar 

  9. Roy A, Naik N, Srinath Reddy K. Strengths and limitations of using the polypill in cardiovascular prevention. Curr Cardiol Rep. 2017;19:1–8.

    Article  Google Scholar 

  10. Memon RA, Raveena Bai B, Simran F, Kumari M, Aisha F, Sai Kiran K, Kakarlapudi Y, Saleem F. Effect of the polypill on adherence and prevention of cardiovascular diseases in patients with or at high risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. Cureus. 2023; https://doi.org/10.7759/cureus.34134.

  11. Rayna T, Striukova L. From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technol Forecast Soc Change. 2016;102:214–24. https://doi.org/10.1016/j.techfore.2015.07.023.

    Article  Google Scholar 

  12. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res. 2018;35:1–22.

    Article  Google Scholar 

  13. Auriemma G, Tommasino C, Falcone G, Esposito T, Sardo C, Aquino RP. Additive manufacturing strategies for personalized drug delivery systems and medical devices: fused filament fabrication and semi solid extrusion. Molecules. 2022;27:2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kutlehria S, D’Souza A, Bleier BS, Amiji MM. Role of 3D printing in the development of biodegradable implants for central nervous system drug delivery. Mol Pharm. 2022;19:4411–27. https://doi.org/10.1021/ACS.MOLPHARMACEUT.2C00344/ASSET/IMAGES/LARGE/MP2C00344_0005.JPEG.

    Article  CAS  PubMed  Google Scholar 

  15. Kewuyemi YO, Kesa H, Adebo OA. Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Crit Rev Food Sci Nutr. 2022;62:7866–904. https://doi.org/10.1080/10408398.2021.1920569.

    Article  CAS  PubMed  Google Scholar 

  16. Firth J, Basit AW, Gaisford S. The role of semi-solid extrusion printing in clinical practice. AAPS Adv Pharm Sci Ser. 2018;31:133–51. https://doi.org/10.1007/978-3-319-90755-0_7/FIGURES/10.

    Article  CAS  Google Scholar 

  17. van Kampen EEM, Ayyoubi S, Willemsteijn L, van Bommel KJC, Ruijgrok EJ. The quest for child-friendly carrier materials used in the 3D semi-solid extrusion printing of medicines. Pharmaceutics. 2023;15:28. https://doi.org/10.3390/pharmaceutics15010028.

    Article  CAS  Google Scholar 

  18. Lei IM, Sheng Y, Lei CL, Leow C, Huang YYS. A hackable, multi-functional, and modular extrusion 3D printer for soft materials. Sci Rep. 2022;12:12294. https://doi.org/10.1038/s41598-022-16008-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bom S, Ribeiro R, Ribeiro HM, Santos C, Marto J. On the progress of hydrogel-based 3D printing: correlating rheological properties with printing behaviour. Int J Pharm. 2022;615:121506.

    Article  CAS  PubMed  Google Scholar 

  20. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA Journal. 2010;1:164–209.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120:11028–55.

    Article  CAS  PubMed  Google Scholar 

  22. Shakor P, Nejadi S, Paul G. A study into the effect of different nozzles shapes and fibre-reinforcement in 3D printed mortar. Materials. 2019;12:1708. https://doi.org/10.3390/MA12101708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS, Ravanbakhsh H, Zhang YS, Bao G, Mongeau L, et al. Emerging technologies in multi-material bioprinting. Adv Mater. 2021;33:2104730. https://doi.org/10.1002/ADMA.202104730.

    Article  CAS  Google Scholar 

  24. Khoeini R, Nosrati H, Akbarzadeh A, Eftekhari A, Kavetskyy T, Khalilov R, Ahmadian E, Nasibova A, Datta P, Roshangar L, et al. Natural and synthetic bioinks for 3D bioprinting. Adv Nanobiomed Res. 2021;1:2000097. https://doi.org/10.1002/ANBR.202000097.

    Article  CAS  Google Scholar 

  25. Golhin AP, Tonello R, Frisvad JR, Grammatikos S, Strandlie A. Surface roughness of as-printed polymers: a comprehensive review. Int J Adv Manuf Technol. 2023;127:987–1043.

    Article  Google Scholar 

  26. Li VCF, Dunn CK, Zhang Z, Deng Y, Qi HJ. Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep. 2017;7:8018. https://doi.org/10.1038/s41598-017-07771-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jang S, Boddorff A, Jang DJ, Lloyd J, Wagner K, Thadhani N, Brettmann B. Effect of material extrusion process parameters on filament geometry and inter-filament voids in as-fabricated high solids loaded polymer composites. Addit Manuf. 2021;47:102313. https://doi.org/10.1016/j.addma.2021.102313.

    Article  CAS  Google Scholar 

  28. Wang L, Zhang M, Bhandari B, Yang C. Investigation on fish surimi gel as promising food material for 3D printing. J Food Eng. 2018;220:101–8. https://doi.org/10.1016/j.jfoodeng.2017.02.029.

    Article  CAS  Google Scholar 

  29. Lee BH, Lum N, Seow LY, Lim PQ, Tan LP. Synthesis and characterization of types a and B gelatin methacryloyl for bioink applications. Materials. 2016;9:797. https://doi.org/10.3390/ma9100797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdella S, Youssef SH, Afinjuomo F, Song Y, Fouladian P, Upton R, Garg S. 3d printing of thermo-sensitive drugs. Pharmaceutics. 2021:13.

    Google Scholar 

  31. Park S, Shou W, Makatura L, Matusik W, Fu K. (Kelvin) 3D printing of polymer composites: materials, processes, and applications. Matter. 2022;5:43–76.

    Article  CAS  Google Scholar 

  32. Zhang J, Thakkar R, Kulkarni VR, Zhang Y, Lu A, Maniruzzaman M. Investigation of the fused deposition modeling additive manufacturing I: influence of process temperature on the quality and crystallinity of the dosage forms. AAPS PharmSciTech. 2021;22:1. https://doi.org/10.1208/s12249-021-02094-8.

    Article  CAS  Google Scholar 

  33. Kulkarni VR, Chakka J, Alkadi F, Maniruzzaman M. Veering to a continuous platform of fused deposition modeling based 3D printing for pharmaceutical dosage forms: understanding the effect of layer orientation on formulation performance. Pharmaceutics. 2023;15:1324. https://doi.org/10.3390/pharmaceutics15051324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lepowsky E, Tasoglu S. 3D printing for drug manufacturing: a perspective on the future of pharmaceuticals. Int J Bioprint. 2018;4:119. https://doi.org/10.18063/IJB.v4i1.119.

    Article  PubMed  Google Scholar 

  35. Lanaro M, Forrestal DP, Scheurer S, Slinger DJ, Liao S, Powell SK, Woodruff MA. 3D printing complex chocolate objects: platform design, optimization and evaluation. J Food Eng. 2017;215:13–22. https://doi.org/10.1016/j.jfoodeng.2017.06.029.

    Article  CAS  Google Scholar 

  36. Derby B. Additive manufacture of ceramics components by inkjet printing. Engineering. 2015;1:113–23.

    Article  CAS  Google Scholar 

  37. Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: a review. Results Eng. 2021;11:100257. https://doi.org/10.1016/j.rineng.2021.100257.

    Article  CAS  Google Scholar 

  38. Uchida DT, Bruschi ML. 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech. 2023;24:41.

    Article  PubMed  Google Scholar 

  39. Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers (Basel). 2020;12:1–60.

    Article  Google Scholar 

  40. Tomal W, Ortyl J. Water-soluble photoinitiators in biomedical applications. Polymers (Basel). 2020:12.

    Google Scholar 

  41. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17:20–42. https://doi.org/10.1208/s12249-015-0360-7.

    Article  CAS  PubMed  Google Scholar 

  42. Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2014;15:65–74. https://doi.org/10.1208/s12249-013-0036-0.

    Article  CAS  PubMed  Google Scholar 

  43. McGuire C, Siliveru K, Ambrose K, Alavi S. Food powder flow in extrusion: role of particle size and composition. PRO. 2022;10:178. https://doi.org/10.3390/pr10010178.

    Article  CAS  Google Scholar 

  44. Abaci A, Gedeon C, Kuna A, Guvendiren M. Additive manufacturing of oral tablets: technologies, materials and printed tablets. Pharmaceutics. 2021;13:1–27.

    Article  Google Scholar 

  45. Lopez Hernandez H, Souza JW, Appel EA. A quantitative description for designing the extrudability of shear-thinning physical hydrogels. Macromol Biosci. 2021;21:2000295. https://doi.org/10.1002/mabi.202000295.

    Article  CAS  Google Scholar 

  46. Zhang B, Teoh XY, Yan J, Gleadall A, Belton P, Bibb R, Qi S. Development of combi-pills using the coupling of semi-solid syringe extrusion 3D printing with fused deposition modelling. Int J Pharm. 2022:625. https://doi.org/10.1016/j.ijpharm.2022.122140.

  47. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494:643–50. https://doi.org/10.1016/j.ijpharm.2015.07.067.

    Article  CAS  PubMed  Google Scholar 

  48. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–14. https://doi.org/10.1016/j.jconrel.2015.09.028.

    Article  CAS  PubMed  Google Scholar 

  49. Škalko-Basnet N. Biologics: the role of delivery systems in improved therapy. Biologics. 2014;8:107–14.

    PubMed  PubMed Central  Google Scholar 

  50. Chang D, Park K, Famili A. Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov Today. 2019; https://doi.org/10.1016/j.drudis.2019.05.037.

  51. Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021:13.

    Google Scholar 

  52. Erzengin S, Guler E, Eser E, Polat EB, Gunduz O, Cam ME. In vitro and in vivo evaluation of 3D printed sodium alginate/polyethylene glycol scaffolds for sublingual delivery of insulin: preparation, characterization, and pharmacokinetics. Int J Biol Macromol. 2022;204:429–40. https://doi.org/10.1016/j.ijbiomac.2022.02.030.

    Article  CAS  PubMed  Google Scholar 

  53. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94:153S–7S. https://doi.org/10.1177/0022034515588303.

    Article  CAS  PubMed  Google Scholar 

  54. Bandiera A, Catanzano O, Bertoncin P, Bergonzi C, Bettini R, Elviri L. 3D-printed scaffold composites for the stimuli-induced local delivery of bioactive adjuncts. Biotechnol Appl Biochem. 2022;69:1793–804. https://doi.org/10.1002/bab.2245.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Xu J, Fei Z, Dai H, Fan Q, Yang Q, Chen Y, Wang B, Wang C. 3D printing scaffold vaccine for antitumor immunity. Adv Mater. 2021;33:202106768. https://doi.org/10.1002/adma.202106768.

    Article  CAS  Google Scholar 

  56. Chen M, Andersen M, Dillschneider P, Chang CC, Gao S, Le DQS, Yang C, Hein S, Bünger C, Kjems J. Co-delivery of SiRNA and doxorubicin to cancer cells from additively manufactured implants. RSC Adv. 2015;5:101718–25. https://doi.org/10.1039/c5ra23748c.

    Article  CAS  Google Scholar 

  57. Shende P, Trivedi R. 3D printed bioconstructs: regenerative modulation for genetic expression; 2015. https://doi.org/10.1007/s12015-021-10120-2/Published.

    Book  Google Scholar 

  58. Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of MRNA, MiRNA and SiRNA. Theranostics. 2020;10:3190–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abu Awwad HADM, Thiagarajan L, Kanczler JM, Amer MH, Bruce G, Lanham S, Rumney RMH, Oreffo ROC, Dixon JE. Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair. J Control Release. 2020;325:335–46. https://doi.org/10.1016/j.jconrel.2020.06.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moncal KK, Aydin RST, Abu-Laban M, Heo DN, Rizk E, Tucker SM, Lewis GS, Hayes D, Ozbolat IT. Collagen-infilled 3D printed scaffolds loaded with MiR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats. Mater Sci Eng C. 2019;105:110128. https://doi.org/10.1016/j.msec.2019.110128.

    Article  CAS  Google Scholar 

  61. Kang DH, Louis F, Liu H, Shimoda H, Nishiyama Y, Nozawa H, Kakitani M, Takagi D, Kasa D, Nagamori E, et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun. 2021;12:5059. https://doi.org/10.1038/s41467-021-25236-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Glover K, Mathew E, Pitzanti G, Magee E, Lamprou DA. 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Deliv Transl Res. 2022; https://doi.org/10.1007/s13346-022-01115-8.

  63. 3D bioprinting market size, share & trends analysis report by technology.

    Google Scholar 

  64. Bagaria V, Bhansali R, Pawar P. 3D printing- creating a blueprint for the future of orthopedics: current concept review and the road ahead! J Clin Orthop Trauma. 2018;9:207–12.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater. 2019;95:32–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Olson JL, Atala A, Yoo JJ. Tissue engineering: current strategies and future directions. Chonnam Med J. 2011;47:1. https://doi.org/10.4068/cmj.2011.47.1.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017:6.

    Google Scholar 

  68. Herrada-Manchón H, Celada L, Rodríguez-González D, Alejandro Fernández M, Aguilar E, Chiara MD. Three-dimensional bioprinted cancer models: a powerful platform for investigating tunneling nanotube-like cell structures in complex microenvironments. Mater Sci Eng C. 2021;128:112357. https://doi.org/10.1016/j.msec.2021.112357.

    Article  CAS  Google Scholar 

  69. Ji S, Almeida E, Guvendiren M. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater. 2019;95:214–24. https://doi.org/10.1016/j.actbio.2019.02.038.

    Article  CAS  PubMed  Google Scholar 

  70. Dababneh AB, Ozbolat IT. Bioprinting technology: a current state-of-the-art review. J Manuf Sci E T ASME. 2014:136. https://doi.org/10.1115/1.4028512.

  71. He Y, Gu Z, Xie M, Fu J, Lin H. Why choose 3D bioprinting? Part II: methods and bioprinters. Biodes Manuf. 2020;3:1–4. https://doi.org/10.1007/S42242-020-00064-W/METRICS.

    Article  Google Scholar 

  72. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–85. https://doi.org/10.1002/ADMA.200901141.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang YS, Haghiashtiani G, Hübscher T, Kelly DJ, Lee JM, Lutolf M, McAlpine MC, Yeong WY, Zenobi-Wong M, Malda J. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1:1. https://doi.org/10.1038/s43586-021-00073-8.

    Article  CAS  Google Scholar 

  74. Mudavath S, Arvapalli S. A review on recent advances in 3D bioprinting. Int J Pharma Bio Med Sci. 2022;2:484–93. https://doi.org/10.47191/IJPBMS/V2-I11-03.

    Article  Google Scholar 

  75. Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen. 2021;2:1–18. https://doi.org/10.1016/J.ENGREG.2020.12.001.

    Article  Google Scholar 

  76. Deshmane S, Kendre P, Mahajan H, Jain S. Stereolithography 3D printing technology in pharmaceuticals: a review. 2021;47:1362–72. https://doi.org/10.1080/03639045.2021.1994990.

  77. Xie Z, Gao M, Lobo AO, Webster TJ. 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers (Basel). 2020:12.

    Google Scholar 

  78. Miri AK, Mostafavi E, Khorsandi D, Hu SK, Malpica M, Khademhosseini A. Bioprinters for organs-on-chips. Biofabrication. 2019:11.

    Google Scholar 

  79. Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120:10793–833. https://doi.org/10.1021/ACS.CHEMREV.0C00008/ASSET/IMAGES/LARGE/CR0C00008_0028.JPEG.

    Article  CAS  PubMed  Google Scholar 

  80. Lee SC, Gillispie G, Prim P, Lee SJ. Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem Rev. 2020;120:10834–86. https://doi.org/10.1021/ACS.CHEMREV.0C00015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ramesh S, Harrysson OLA, Rao PK, Tamayol A, Cormier DR, Zhang Y, Rivero IV. Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116. https://doi.org/10.1016/J.BPRINT.2020.E00116.

    Article  Google Scholar 

  82. Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S. Current developments in 3D bioprinting for tissue and organ regeneration–a review. Front Mech Eng. 2020;6:90. https://doi.org/10.3389/FMECH.2020.589171/BIBTEX.

    Article  Google Scholar 

  83. Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D bioprinting in skin related research: recent achievements and application perspectives. ACS Synth Biol. 2022;11:26–38. https://doi.org/10.1021/ACSSYNBIO.1C00547/ASSET/IMAGES/LARGE/SB1C00547_0002.JPEG.

    Article  CAS  PubMed  Google Scholar 

  84. Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting technologies in tissue engineering. Adv Biochem Eng Biotechnol. 2020;171:279–319. https://doi.org/10.1007/10_2019_108/TABLES/7.

    Article  CAS  PubMed  Google Scholar 

  85. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;15:529–57. https://doi.org/10.1016/J.AJPS.2019.11.003.

    Article  PubMed  Google Scholar 

  86. Koçak E, Yıldız A, Acartürk F. Three dimensional bioprinting technology: applications in pharmaceutical and biomedical area. Colloids Surf B Biointerfaces. 2021;197:111396. https://doi.org/10.1016/J.COLSURFB.2020.111396.

    Article  PubMed  Google Scholar 

  87. Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020:9. https://doi.org/10.1002/ADHM.201901648.

  88. Magalhães LSSM, Santos FEP, de Maria Vaz Elias C, Afewerki S, Sousa GF, Furtado ASA, Marciano FR, Lobo AO. Printing 3D hydrogel structures employing low-cost stereolithography technology. J Funct Biomat. 2020;11:12. https://doi.org/10.3390/JFB11010012.

    Article  Google Scholar 

  89. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:1. https://doi.org/10.1186/S13036-015-0001-4.

    Article  CAS  Google Scholar 

  90. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4:370–80. https://doi.org/10.1038/S41551-019-0471-7.

    Article  PubMed  Google Scholar 

  91. Prabhakaran P, Palaniyandi T, Kanagavalli B, Ram Kumar V, Hari R, Sandhiya V, Baskar G, Rajendran BK, Sivaji A. Prospect and retrospect of 3D bio-printing. Acta Histochem. 2022;124:151932. https://doi.org/10.1016/J.ACTHIS.2022.151932.

    Article  CAS  PubMed  Google Scholar 

  92. Bejoy AM, Makkithaya KN, Hunakunti BB, Hegde A, Krishnamurthy K, Sarkar A, Lobo CF, Keshav DVS, et al. An insight on advances and applications of 3d bioprinting: a review. Bioprinting. 2021;24:e00176. https://doi.org/10.1016/J.BPRINT.2021.E00176.

    Article  Google Scholar 

  93. Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release. 2022;351:444–55. https://doi.org/10.1016/J.JCONREL.2022.09.032.

    Article  CAS  PubMed  Google Scholar 

  94. Rahman M, Almalki WH, Alghamdi S, Alharbi KS, Khalilullah H, Habban Akhter M, Keshari AK, Sharma N, Singh T, Soni K, et al. Three ‘D’s: design approach, dimensional printing, and drug delivery systems as promising tools in healthcare applications. Drug Discov Today. 2021;26:2726–33. https://doi.org/10.1016/J.DRUDIS.2021.06.016.

    Article  CAS  PubMed  Google Scholar 

  95. Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504–34. https://doi.org/10.1016/J.ADDR.2021.05.007.

    Article  CAS  PubMed  Google Scholar 

  96. Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42:1019–31. https://doi.org/10.3109/03639045.2015.1120743.

    Article  CAS  PubMed  Google Scholar 

  97. Ghosh S, Yi HG. A review on bioinks and their application in plant bioprinting. Int J Bioprint. 2022;8:172–204. https://doi.org/10.18063/ijb.v8i4.612.

    Article  CAS  Google Scholar 

  98. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35:217–39.

    Article  CAS  PubMed  Google Scholar 

  99. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019:1.

    Google Scholar 

  100. Sonnleitner D, Schrüfer S, Berglund L, Schubert DW, Lang G. Correlating rheology and printing performance of fiber-reinforced bioinks to assess predictive modelling for biofabrication. J Mater Res. 2021;36:3821–32. https://doi.org/10.1557/s43578-021-00276-5.

    Article  CAS  Google Scholar 

  101. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol. 2022;96:691–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Theus AS, Ning L, Hwang B, Gil C, Chen S, Wombwell A, Mehta R, Serpooshan V. Bioprintability: physiomechanical and biological requirements of materials for 3d bioprinting processes. Polymers (Basel). 2020;12:1–19.

    Article  Google Scholar 

  103. Bercea M. Rheology as a tool for fine-tuning the properties of printable bioinspired gels. Molecules. 2023;28:2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ahmadi Soufivand A, Faber J, Hinrichsen J, Budday S. Multilayer 3D bioprinting and complex mechanical properties of alginate-gelatin mesostructures. Sci Rep. 2023;13:11253. https://doi.org/10.1038/s41598-023-38323-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Kent Leach J. Evaluation of alginate-based bioinks for 3D bioprinting, mesenchymal stromal cell osteogenesis, and application for patient-specific bone grafts. 2020; https://doi.org/10.1101/2020.08.09.242131.

  106. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43.

    Article  CAS  PubMed  Google Scholar 

  107. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758. https://doi.org/10.1126/sciadv.1500758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng. 2016;44:2090–102.

    Article  PubMed  Google Scholar 

  109. Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45:148–63. https://doi.org/10.1007/s10439-016-1612-8.

    Article  CAS  PubMed  Google Scholar 

  110. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarker MD, Naghieh S, Sharma NK, Chen X. 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J Pharm Anal. 2018;8:277–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 2019;90:37–48. https://doi.org/10.1016/j.actbio.2019.03.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gao Q, Liu Z, Lin Z, Qiu J, Liu Y, Liu A, Wang Y, Xiang M, Chen B, Fu J, et al. 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater Sci Eng. 2017;3:399–408. https://doi.org/10.1021/acsbiomaterials.6b00643.

    Article  CAS  PubMed  Google Scholar 

  114. Sheikhi M, Rafiemanzelat F, Ghodsi S, Moroni L, Setayeshmehr M. 3D printing of jammed self-supporting microgels with alternative mechanism for shape fidelity, crosslinking and conductivity. Addit Manuf. 2022;58:102997. https://doi.org/10.1016/j.addma.2022.102997.

    Article  CAS  Google Scholar 

  115. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30:1587–95. https://doi.org/10.1016/j.biomaterials.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  116. Bertlein S, Brown G, Lim KS, Jungst T, Boeck T, Blunk T, Tessmar J, Hooper GJ, Woodfield TBF, Groll J. Thiol–Ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater. 2017;29:1703404. https://doi.org/10.1002/adma.201703404.

    Article  CAS  Google Scholar 

  117. Allwood JM, Childs THC, Clare AT, De Silva AKM, Dhokia V, Hutchings IM, Leach RK, Leal-Ayala DR, Lowth S, Majewski CE, et al. Manufacturing at double the speed. J Mater Process Technol. 2015;229:729–57. https://doi.org/10.1016/j.jmatprotec.2015.10.028.

    Article  Google Scholar 

  118. Arefin AME, Khatri NR, Kulkarni N, Egan PF. Polymer 3D printing review: materials, process, and design strategies for medical applications. Polymers (Basel). 2021;13:1499. https://doi.org/10.3390/polym13091499.

    Article  CAS  PubMed  Google Scholar 

  119. Miri AK, Mirzaee I, Hassan S, Mesbah Oskui S, Nieto D, Khademhosseini A, Zhang YS. Effective bioprinting resolution in tissue model fabrication. Lab Chip. 2019;19:2019–37. https://doi.org/10.1039/c8lc01037d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Malekpour A, Chen X. Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views. J Funct Biomater. 2022:13.

    Google Scholar 

  121. Croom BP, Abbott A, Kemp JW, Rueschhoff L, Smieska L, Woll A, Stoupin S, Koerner H. Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites. Addit Manuf. 2021;37:101701. https://doi.org/10.1016/j.addma.2020.101701.

    Article  CAS  Google Scholar 

  122. Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live cells. Eng Regen. 2022;3:292–309.

    Google Scholar 

  123. Stepanovska J, Supova M, Hanzalek K, Broz A, Matejka R. Collagen bioinks for bioprinting: a systematic review of hydrogel properties, bioprinting parameters, protocols, and bioprinted structure characteristics. Biomedicine. 2021;9:1137. https://doi.org/10.3390/biomedicines9091137.

    Article  CAS  Google Scholar 

  124. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9:044107. https://doi.org/10.1088/1758-5090/aa8dd8.

    Article  CAS  PubMed  Google Scholar 

  125. Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22:085014. https://doi.org/10.1088/0960-1317/22/8/085014.

    Article  CAS  Google Scholar 

  126. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130–9. https://doi.org/10.1016/j.biomaterials.2012.09.035.

    Article  CAS  PubMed  Google Scholar 

  127. Chung JHY, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton SE, Wallace GG. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013;1:763–73. https://doi.org/10.1039/c3bm00012e.

    Article  CAS  PubMed  Google Scholar 

  128. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101 A:1255–64. https://doi.org/10.1002/jbm.a.34420.

    Article  CAS  Google Scholar 

  129. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials. 2006;27:2141–9. https://doi.org/10.1016/j.biomaterials.2005.10.026.

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen D, Hgg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, et al. Cartilage tissue engineering by the 3D bioprinting of IPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7:658. https://doi.org/10.1038/s41598-017-00690-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–15. https://doi.org/10.1016/j.biomaterials.2015.05.031.

    Article  CAS  PubMed  Google Scholar 

  132. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28:677–684a. https://doi.org/10.1002/adma.201503310.

    Article  CAS  PubMed  Google Scholar 

  133. Maiullari F, Costantini M, Milan M, Pace V, Chirivì M, Maiullari S, Rainer A, Baci D, Marei HES, Seliktar D, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and IPSC-derived cardiomyocytes. Sci Rep. 2018;8:13532. https://doi.org/10.1038/s41598-018-31848-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;14:1.

    Google Scholar 

  135. Antich C, de Vicente J, Jiménez G, Chocarro C, Carrillo E, Montañez E, Gálvez-Martín P, Marchal JA. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020;106:114–23. https://doi.org/10.1016/j.actbio.2020.01.046.

    Article  CAS  PubMed  Google Scholar 

  136. Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH. Gelatin Methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep. 2019;9:6863. https://doi.org/10.1038/s41598-019-42186-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10:6849–57. https://doi.org/10.1021/acsami.7b16059.

    Article  CAS  PubMed  Google Scholar 

  138. Wang W, Zhu Y, Li J, Geng T, Jia J, Wang X, Yuan C, Wang P. Bioprinting EphrinB2-modified dental pulp stem cells with enhanced osteogenic capacity for alveolar bone engineering. Tissue Eng Part A. 2023;29:244–55. https://doi.org/10.1089/ten.tea.2022.0180.

    Article  CAS  PubMed  Google Scholar 

  139. Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, Davis ME. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater. 2018;7:1800672. https://doi.org/10.1002/adhm.201800672.

    Article  CAS  Google Scholar 

  140. Lian Q, Jiao T, Zhao T, Wang H, Yang S, Li D. 3D bioprinted skin substitutes for accelerated wound healing and reduced scar. J Bionic Eng. 2021;18:900–14. https://doi.org/10.1007/s42235-021-0053-8.

    Article  Google Scholar 

  141. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935.

    Article  CAS  PubMed  Google Scholar 

  142. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 1979;2009(326):1216–9.

    Google Scholar 

  143. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang H, Atala A, Yoo JJ. Kidney regeneration approaches for translation. World J Urol. 2020;38:2075–9. https://doi.org/10.1007/s00345-019-02999-x.

    Article  PubMed  Google Scholar 

  145. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One. 2014;9:e90406. https://doi.org/10.1371/journal.pone.0090406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16:1489–96. https://doi.org/10.1021/acs.biomac.5b00188.

    Article  CAS  PubMed  Google Scholar 

  147. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C. 2018;83:195–201. https://doi.org/10.1016/j.msec.2017.09.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Maniruzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, V., Zhang, K., Chakka, J., Heshmati, N., Duggal, I., Maniruzzaman, M. (2024). Semisolid Extrusion Printing and 3D Bioprinting. In: Repka, M.A., Langley, N. (eds) 3D Printing . AAPS Advances in the Pharmaceutical Sciences Series, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-46015-9_8

Download citation

Publish with us

Policies and ethics