Skip to main content

Contrast-Associated Acute Kidney Injury in Trauma

  • Chapter
  • First Online:
Trauma Computed Tomography

Abstract

Hospitalized patients are at an increased risk of acute kidney injury. Patients presenting with trauma-related injuries present unique risk factors to increase risk for kidney injury due to hemodynamic factors, crush injuries, and inflammatory mediators. The risk in these patients is additionally mediated by nephrotoxic medications, including non-ionic contrast administration for contrast-enhanced computed tomography scans. The evidence base for contrast-associated acute kidney injury is confounded by varying inclusion and exclusion criteria, prophylactic measures used, and outcome assessment. The risk of contrast-associated acute kidney injury is likely greatest in those who have estimated glomerular filtration <30 mL/min/1.73 m2 or 30–45 mL/min/1.73 m2 with additional risk factors. The most evidence-based approach for prevention of contrast-associated kidney injury is through isotonic intravenous fluid administration, which should be employed in patients at highest risk of kidney injury who require contrast administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKI:

Acute kidney injury

CA-AKI:

Contrast-associated acute kidney injury

CECT:

Contrast-enhanced computed tomography

CI-AKI:

Contrast-induced acute kidney injury

CIN:

Contrast-induced nephropathy

CKD:

Chronic kidney disease

CT:

Computed tomography

DM:

Diabetes mellitus

eGFR:

Estimated glomerular filtration rate

KDIGO:

Kidney disease improving global outcomes

NaCl:

Sodium chloride

SCr:

Serum creatinine

References

  1. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

    Article  PubMed  Google Scholar 

  2. Søvik S, Isachsen MS, Nordhuus KM, Tveiten CK, Eken T, Sunde K, et al. Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis. Intensive Care Med. 2019;45(4):407–19.

    Article  PubMed  Google Scholar 

  3. Messerer DAC, Halbgebauer R, Nilsson B, Pavenstädt H, Radermacher P, Huber-Lang M. Immunopathophysiology of trauma-related acute kidney injury. Nat Rev Nephrol. 2021;17(2):91–111.

    Article  CAS  PubMed  Google Scholar 

  4. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1–138.

    Google Scholar 

  5. Lameire N, Kellum JA. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2). Crit Care. 2013;17(1):205.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191(2):376–82.

    Article  PubMed  Google Scholar 

  7. Bruce RJ, Djamali A, Shinki K, Michel SJ, Fine JP, Pozniak MA. Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol. 2009;192(3):711–8.

    Article  PubMed  Google Scholar 

  8. ACR Committee on Drugs and Contrast Media. ACR manual on contrast media. Reston: American College of Radiology; 2022.

    Google Scholar 

  9. Yu AS, Chertow GM, Luyckx VA, Marsden PA, Skorecki K, Taal MW, editors. Brenner & Rector’s the kidney. 11th ed. Philadelphia: Saunders; 2011.

    Google Scholar 

  10. Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55.

    Article  CAS  PubMed  Google Scholar 

  11. Persson PB, Tepel M. Contrast medium-induced nephropathy: the pathophysiology. Kidney Int. 2006;69:S8–S10.

    Article  Google Scholar 

  12. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rudnick MR, Goldfarb S, Wexler L, Ludbrook PA, Murphy MJ, Halpern EF, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47(1):254–61.

    Article  CAS  PubMed  Google Scholar 

  14. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. N Engl J Med. 1989;320(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  16. Chertow GM, Normand SL, McNeil BJ. “Renalism”: inappropriately low rates of coronary angiography in elderly individuals with renal insufficiency. J Am Soc Nephrol. 2004;15(9):2462–8.

    Article  PubMed  Google Scholar 

  17. Aycock RD, Westafer LM, Boxen JL, Majlesi N, Schoenfeld EM, Bannuru RR. Acute kidney injury after computed tomography: a meta-analysis. Ann Emerg Med. 2018;71(1):44–53.e4.

    Article  PubMed  Google Scholar 

  18. Rudnick MR, Leonberg-Yoo AK, Litt HI, Cohen RM, Hilton S, Reese PP. The controversy of contrast-induced nephropathy with intravenous contrast: what is the risk? Am J Kidney Dis. 2020;75(1):105–13.

    Article  PubMed  Google Scholar 

  19. Davenport MS, Khalatbari S, Dillman JR, Cohan RH, Caoili EM, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology. 2013;267(1):94–105.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology. 2013;268(3):719–28.

    Article  PubMed  Google Scholar 

  21. McDonald RJ, McDonald JS, Bida JP, Carter RE, Fleming CJ, Misra S, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267(1):106–18.

    Article  PubMed  Google Scholar 

  22. McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271(1):65–73.

    Article  PubMed  Google Scholar 

  23. McDonald JS, McDonald RJ, Lieske JC, Carter RE, Katzberg RW, Williamson EE, et al. Risk of acute kidney injury, dialysis, and mortality in patients with chronic kidney disease after intravenous contrast material exposure. Mayo Clin Proc. 2015;90(8):1046–53.

    Article  CAS  PubMed  Google Scholar 

  24. McDonald JS, McDonald RJ, Williamson EE, Kallmes DF. Is intravenous administration of iodixanol associated with increased risk of acute kidney injury, dialysis, or mortality? A propensity score-adjusted study. Radiology. 2017;285(2):414–24.

    Article  PubMed  Google Scholar 

  25. Obed M, Gabriel MM, Dumann E, Vollmer Barbosa C, Weißenborn K, Schmidt BMW. Risk of acute kidney injury after contrast-enhanced computerized tomography: a systematic review and meta-analysis of 21 propensity score-matched cohort studies. Eur Radiol. 2022;32(12):8432–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology. 2020;294(3):660–8.

    Article  PubMed  Google Scholar 

  27. McDonald JS, McDonald RJ, Williamson EE, Kallmes DF, Kashani K. Post-contrast acute kidney injury in intensive care unit patients: a propensity score-adjusted study. Intensive Care Med. 2017;43(6):774–84.

    Article  PubMed  Google Scholar 

  28. Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28(2):653–9.

    Article  PubMed  Google Scholar 

  29. Baerlocher MO, Asch M, Myers A. The use of contrast media. CMAJ. 2010;182(7):697.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown JR, Robb JF, Block CA, Schoolwerth AC, Kaplan AV, O’Connor GT, et al. Does safe dosing of iodinated contrast prevent contrast-induced acute kidney injury? Circ Cardiovasc Interv. 2010;3(4):346–50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rudnick MR, Fay K, Wahba IM. Fluid administration strategies for the prevention of contrast-associated acute kidney injury. Curr Opin Nephrol Hypertens. 2022;31(5):414–24.

    Article  CAS  PubMed  Google Scholar 

  32. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22.

    Article  PubMed  Google Scholar 

  33. Wang Z, Song Y, Geru A, Li Y. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Int Heart J. 2019;60(5):1077–82.

    Article  CAS  PubMed  Google Scholar 

  34. Michel P, Amione-Guerra J, Sheikh O, Jameson LC, Bansal S, Prasad A. Meta-analysis of intravascular volume expansion strategies to prevent contrast-associated acute kidney injury following invasive angiography. Catheter Cardiovasc Interv. 2021;98(6):1120–32.

    Article  PubMed  Google Scholar 

  35. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  36. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Rudnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudnick, M.R., Spiardi, R. (2023). Contrast-Associated Acute Kidney Injury in Trauma. In: Knollmann, F. (eds) Trauma Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-031-45746-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45746-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45745-6

  • Online ISBN: 978-3-031-45746-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics