Skip to main content

Biopharma 4.0 for Biologics Manufacturing Under Pandemic Constraints

  • Chapter
  • First Online:
Biopharmaceutical Manufacturing

Part of the book series: Cell Engineering ((CEEN,volume 11))

  • 432 Accesses

Abstract

Biologics are the fastest growing molecular group in pharmaceutical therapies as supplying large most human-body like molecules with high efficacy at low doses and less side effects. Biopharma 4.0 relates to the fourth industrial revolution based on digitalization. Digitalization has reached biopharmaceutical industry along the whole development and value chain. Biologics manufacturing of such complex three-dimensional molecules in correct folding and glycosylation pattern for best bioavailability is still a challenge for world scale amount supply. As the variety of new entities vary recently quite broad from peptides, virus like particles, pDNA and mRNA to cell therapies new process design and development methods are needed to speed up robust product supply for patients. A sound theoretical basis is needed to utilize process modeling tools as digital twins for autonomous operation of manufacturing processes. Qualified operators are the rare resource bottleneck to guarantee product quality. Therefore, continuous biomanufacturing as well as the consequent application of the quality by design approachare key-enablers towards biopharma 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

advanced process control

AMWHV:

Arzneimittel- und Wirkstoffherstellungsverordnung

CBM:

continuous biomanufacturing

cGMP:

current Good-Manufacturing-Practice

CHO:

chinese hamster ovary

COG:

cost of goods

CQA:

critical quality attributes

DARPA:

Defense Advanced Research Projects Agency

DoE:

Desing-of-Experiments

FDA:

Food and Drug Administration

FMEA :

failure-mode-error-analysis

GMP :

Good-Manufacturing-Practice

GWP:

global warming potential

HIV:

human immunodeficiency viruses

ICH :

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use

LNP:

lipid nano particle

mAbs :

monoclonal antibodies

mRNA :

messenger RNA

NN:

neural network

OLS:

ordinary least squares

PAT:

Process-Analytical-Technology

pDNA :

plasmid DNA

PLS:

partial least squares

QbD:

Quality-by-Design

QTPP :

quality-target-product-profile

RTRT:

Real-time-release-testing

scFv :

single chain variable fragment

SU:

single use

VLP:

Virus-like particle

References

  1. Rao V, Srinivas K (2011) Modern drug discovery process: an in silico approach. J Bioinf Seq Anal 2:89–94

    Google Scholar 

  2. Venkatesh KP, Raza MM, Kvedar JC (2022) Health digital twins as tools for precision medicine: considerations for computation, implementation, and regulation. NPJ Digit Med 5:150. https://doi.org/10.1038/s41746-022-00694-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fraunhofer-Gesellschaft med2icin. https://websites.fraunhofer.de/med2icin/. Accessed 05 Jan 2023

  4. Erol T, Mendi AF, Dogan D (2020) The Digital Twin revolution in healthcare. In: 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT). IEEE, pp 1–7

    Google Scholar 

  5. Coorey G, Figtree GA, Fletcher DF et al (2021) The health digital twin: advancing precision cardiovascular medicine. Nat Rev Cardiol 18:803–804. https://doi.org/10.1038/s41569-021-00630-4

    Article  PubMed  Google Scholar 

  6. Valerio LG (2012) Application of advanced in silico methods for predictive modeling and information integration. Expert Opin Drug Metab Toxicol 8:395–398. https://doi.org/10.1517/17425255.2012.664636

    Article  PubMed  Google Scholar 

  7. Rønning-andersson A, Daniel Ingemann, Kroier Pedersen (2022) Novo Nordisk and Novartis will participate in large Danish project on decentralized clinical trials. JP/Politikens Hus A/S

    Google Scholar 

  8. Boetker J, Raijada D, Aho J et al (2016) In silico product design of pharmaceuticals. Asian J Pharmaceut Sci 11:492–499. https://doi.org/10.1016/j.ajps.2016.02.010

    Article  Google Scholar 

  9. Lorenz S, Amsel A-K, Puhlmann N et al (2021) Toward application and implementation of in silico tools and workflows within benign by design approaches. ACS Sustain Chem Eng 9:12461–12475. https://doi.org/10.1021/acssuschemeng.1c03070

    Article  CAS  Google Scholar 

  10. Roush D, Asthagiri D, Babi DK et al (2020) Toward in silico CMC: an industrial collaborative approach to model-based process development. Biotechnol Bioeng 117:3986–4000. https://doi.org/10.1002/bit.27520

    Article  CAS  PubMed  Google Scholar 

  11. Zobel-Roos S, Schmidt A, Uhlenbrock L et al (2021) Digital Twins in biomanufacturing. Adv Biochem Eng Biotechnol 176:181–262. https://doi.org/10.1007/10_2020_146

    Article  CAS  PubMed  Google Scholar 

  12. SKF (2021) Measuring unscheduled downtime. Paper Advance

    Google Scholar 

  13. Mowbray M, Vallerio M, Perez-Galvan C et al (2022) Industrial data science – a review of machine learning applications for chemical and process industries. React Chem Eng 7:1471–1509. https://doi.org/10.1039/d1re00541c

    Article  CAS  Google Scholar 

  14. Thon C, Finke B, Kwade A et al (2021) Artificial intelligence in process engineering. Adv Intell Syst 3:2000261. https://doi.org/10.1002/aisy.202000261

    Article  Google Scholar 

  15. Klatt K-U, Marquardt W (2007) Perspectives for process systems engineering – a personal view from academia and industry. In: 17th European symposium on computer aided process engineering, vol 24. Elsevier, pp 19–32

    Chapter  Google Scholar 

  16. GlobalData Healthcare Biologic sales forecast to pass innovative small molecule sales in next five years: GlobalData has forecast biologic sales to significantly overtake sales of small molecules by $120bn by 2027. https://www.pharmaceutical-technology.com/comment/biologic-sales-small-molecule-sales/. Accessed 08 Nov 2022

  17. Niazi SK (2022) The coming of age of biosimilars: a personal perspective. Biologics 2:107–127. https://doi.org/10.3390/biologics2020009

    Article  Google Scholar 

  18. Nathan JJ, Ramchandani M, Kaur P (2018) Manufacturing of biologics. In: Yamauchi PS (ed) Biologic and systemic agents in dermatology. Springer International Publishing, Cham, pp 101–110

    Chapter  Google Scholar 

  19. Brown DG, Boström J (2018) Where do recent small molecule clinical development candidates come from? J Med Chem 61:9442–9468. https://doi.org/10.1021/acs.jmedchem.8b00675

    Article  CAS  PubMed  Google Scholar 

  20. Drug Hunter Inc. (2021) 2020 large molecule drug approvals. https://drughunter.com/resource/2020-large-molecule-drug-approvals/. Accessed 08 Nov 2022

  21. de Wilde S, Guchelaar H-J, Zandvliet ML et al (2016) Clinical development of gene- and cell-based therapies: overview of the European landscape. Mol Ther Methods Clin Dev 3:16073. https://doi.org/10.1038/mtm.2016.73

    Article  PubMed  PubMed Central  Google Scholar 

  22. US Food and Drug Administration (2022) Novel drug approvals for 2022. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2022. Accessed 08 Nov 2022

  23. Mullard A (2021) 2020 FDA drug approvals. Nat Rev Drug Discov 20:85–90. https://doi.org/10.1038/d41573-021-00002-0

    Article  CAS  PubMed  Google Scholar 

  24. Laffly E, Sodoyer R (2005) Monoclonal and recombinant antibodies, 30 years after. Hum Antibodies 14:33–55

    Article  CAS  PubMed  Google Scholar 

  25. Steinitz M (2009) Three decades of human monoclonal antibodies: past, present and future developments. Hum Antibodies 18:1–10. https://doi.org/10.3233/HAB-2009-0196

    Article  CAS  PubMed  Google Scholar 

  26. Zurdo J (2013) Developability assessment as an early de-risking tool for biopharmaceutical development. Pharm Bioprocess 1:29–50. https://doi.org/10.4155/pbp.13.3

    Article  Google Scholar 

  27. Seyhan AA (2019) Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl Med Commun 4. https://doi.org/10.1186/s41231-019-0050-7

  28. Zobel-Roos S, Schmidt A, Mestmäcker F et al (2019) Accelerating biologics manufacturing by modeling or: is approval under the QbD and PAT approaches demanded by authorities acceptable without a Digital-Twin? Processes 7:94. https://doi.org/10.3390/pr7020094

    Article  Google Scholar 

  29. Fisher AC, Lee SL, Harris DP et al (2016) Advancing pharmaceutical quality: an overview of science and research in the U.S. FDA’s Office of Pharmaceutical Quality. Int J Pharm 515:390–402. https://doi.org/10.1016/j.ijpharm.2016.10.038

    Article  CAS  PubMed  Google Scholar 

  30. US Food and Drug Administration (2004) PAT — a framework for innovative pharmaceutical development, manufacturing, and quality assurance: guidance for industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance. Accessed 08 Nov 2022

  31. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use good manufacturing practice guide for active pharmaceutical ingredients Q7: ICH harmonised tripartite guideline. https://database.ich.org/sites/default/files/Q7%20Guideline.pdf. Accessed 08 Nov 2022

  32. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use derivation and characterisation of cell substrates used for production of biotechnological/biological productS Q5D. ICH harmonised tripartite guideline. https://database.ich.org/sites/default/files/Q5D%20Guideline.pdf. Accessed 08 Nov 2022

  33. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use quality of biotechnological products: stability testing of biotechnological/biological products Q5C: ICH harmonised tripartite guideline. https://database.ich.org/sites/default/files/Q5C%20Guideline.pdf. Accessed 08 Nov 2022

  34. International Council For Harmonisation of Technical Requirements For Pharmaceuticals For Human Use quality of biotechnological products: analysis of the expression construct in cells used for production of R-DNA derived protein products Q5B: ICH harmonised tripartite guideline. https://database.ich.org/sites/default/files/Q5B%20Guideline.pdf. Accessed 08 Nov 2022

  35. International Council for Harmonisation of Technical Requirements for Pharmaceuticals For Human Use viral safety evaluation of biotechnology products derived from cell lines of human or animal origin Q5A(R2). ICH harmonised guideline. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-5-r2-viral-safety-evaluation-biotechnology-products-derived-cell-lines-human-animal-origin_en.pdf. Accessed 08 Nov 2022

  36. International Council for Harmonisation of Technical Requirements For Pharmaceuticals for Human Use comparability of biotechnological/biological products subject to changes in their manufacturing process Q5E: ICH harmonised tripartite guideline. https://database.ich.org/sites/default/files/Q5E%20Guideline.pdf. Accessed 08 Nov 2022

  37. Bundesamt für Justiz Verordnung über die Anwendung der Guten Herstellungspraxis bei der Herstellung von Arzneimitteln und Wirkstoffen und über die Anwendung der Guten fachlichen Praxis bei der Herstellung von Produkten menschlicher Herkunft. https://www.gesetze-im-internet.de/amwhv/. Accessed 08 Nov 2022

  38. (2022) European Pharmacopoeia 11th edition print subscription 2023 (11.0, 11.1 and 11.2), 11th edition. European Directorate for the Quality of Medicines & Healthcare

    Google Scholar 

  39. Schmidt A, Helgers H, Vetter FL et al (2021) Digital Twin of mRNA-based SARS-COVID-19 vaccine manufacturing towards autonomous operation for improvements in speed, scale, robustness, flexibility and real-time release testing. Processes 9:748. https://doi.org/10.3390/pr9050748

    Article  CAS  Google Scholar 

  40. Schmidt A, Zobel-Roos S, Helgers H et al (2022) Digital Twins for continuous biologics manufacturing. In: Subramanian G (ed) Process control, intensification, and digitalisation in continuous biomanufacturing, vol 7. Wiley, pp 265–350

    Chapter  Google Scholar 

  41. Schmidt A, Helgers H, Vetter FL et al (2021) Fast and flexible mRNA vaccine manufacturing as a solution to pandemic situations by adopting chemical engineering good practice—continuous autonomous operation in stainless steel equipment concepts. Processes 9:1874. https://doi.org/10.3390/pr9111874

    Article  CAS  Google Scholar 

  42. Juckers A, Knerr P, Harms F et al (2021) Advanced process analytical technology in combination with process modeling for endpoint and model parameter determination in lyophilization process design and optimization. Processes 9:1600. https://doi.org/10.3390/pr9091600

    Article  CAS  Google Scholar 

  43. Hengelbrock A, Helgers H, Schmidt A et al (2022) Digital Twin for HIV-gag VLP production in HEK293 cells. Processes 10:866. https://doi.org/10.3390/pr10050866

    Article  CAS  Google Scholar 

  44. Udugama IA, Bayer C, Baroutian S et al (2022) Digitalisation in chemical engineering: industrial needs, academic best practice, and curriculum limitations. Educ Chem Eng 39:94–107. https://doi.org/10.1016/j.ece.2022.03.003

    Article  Google Scholar 

  45. Udugama IA, Lopez PC, Gargalo CL et al (2021) Digital Twin in biomanufacturing: challenges and opportunities towards its implementation. Syst Microbiol Biomanuf 1:257–274. https://doi.org/10.1007/s43393-021-00024-0

    Article  CAS  Google Scholar 

  46. Clavaud M, Roggo Y, von Daeniken R et al (2013) Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Talanta 111:28–38. https://doi.org/10.1016/j.talanta.2013.03.044

    Article  CAS  PubMed  Google Scholar 

  47. Sagmeister P, Hierzegger R, Williams JD et al (2022) Artificial neural networks and data fusion enable concentration predictions for inline process analytics. Digit Discov 1:405–412. https://doi.org/10.1039/D2DD00006G

    Article  CAS  Google Scholar 

  48. Schmidt A, Helgers H, Lohmann LJ et al (2022) Process analytical technology as key-enabler for digital twins in continuous biomanufacturing. J Chem Tech Biotech 97:2336–2346. https://doi.org/10.1002/jctb.7008

    Article  CAS  Google Scholar 

  49. Sixt M, Gudi G, Schulz H et al (2018) In-line Raman spectroscopy and advanced process control for the extraction of anethole and fenchone from fennel (Foeniculum vulgare L. MILL.). Comptes Rendus Chimie 21:97–103. https://doi.org/10.1016/j.crci.2017.12.004

    Article  CAS  Google Scholar 

  50. Kornecki M, Schmidt A, Strube J (2018) PAT as key-enabling technology for QbD in pharmaceutical manufacturing: a conceptual review on upstream and downstream processing. Chim Oggi Chem Today 36:44–48

    CAS  Google Scholar 

  51. Kornecki M, Strube J (2018) Process analytical technology for advanced process control in biologics manufacturing with the aid of macroscopic kinetic modeling. Bioengineering (Basel) 5. https://doi.org/10.3390/bioengineering5010025

  52. Jensch C, Knierim L, Tegtmeier M et al (2021) Development of a general PAT strategy for online monitoring of complex mixtures—on the example of natural product extracts from bearberry leaf (Arctostaphylos uva-ursi). Processes 9:2129. https://doi.org/10.3390/pr9122129

    Article  CAS  Google Scholar 

  53. Institute for separation and process technology homepage. https://www.itv.tu-clausthal.de/. Accessed 08 Nov 2022

  54. Godawat R, Konstantinov K, Rohani M et al (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19. https://doi.org/10.1016/j.jbiotec.2015.06.393

    Article  CAS  PubMed  Google Scholar 

  55. David L, Schwan P, Lobedann M et al (2020) Side-by-side comparability of batch and continuous downstream for the production of monoclonal antibodies. Biotechnol Bioeng 117:1024–1036. https://doi.org/10.1002/bit.27267

    Article  CAS  PubMed  Google Scholar 

  56. Karst DJ, Steinebach F, Soos M et al (2017) Process performance and product quality in an integrated continuous antibody production process. Biotechnol Bioeng 114:298–307. https://doi.org/10.1002/bit.26069

    Article  CAS  PubMed  Google Scholar 

  57. Kornecki M, Schmidt A, Lohmann L et al (2019) Accelerating biomanufacturing by modeling of continuous bioprocessing—piloting case study of monoclonal antibody manufacturing. Processes 7:495. https://doi.org/10.3390/pr7080495

    Article  CAS  Google Scholar 

  58. Thiess H, Zobel-Roos S, Gronemeyer P et al (2017) Engineering challenges of continuous biomanufacturing processes (CBP). In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 69–106

    Chapter  Google Scholar 

  59. Zobel-Roos S, Thiess H, Gronemeyer P et al (2017) Continuous chromatography as a fully integrated process in continuous biomanufacturing. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 369–392

    Chapter  Google Scholar 

  60. Gronemeyer P, Thiess H, Zobel-Roos S et al (2017) Integration of upstream and downstream in continuous biomanufacturing. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 481–510

    Chapter  Google Scholar 

  61. Schmidt A, Uhlenbrock L, Strube J (2020) Technical potential for energy and GWP reduction in chemical–pharmaceutical industry in Germany and EU—focused on biologics and botanicals manufacturing. Processes 8:818. https://doi.org/10.3390/pr8070818

    Article  CAS  Google Scholar 

  62. Schmidt A, Köster D, Strube J (2022) Climate neutrality concepts for the German chemical–pharmaceutical industry. Processes 10:467. https://doi.org/10.3390/pr10030467

    Article  CAS  Google Scholar 

  63. Uhl A, Schmidt A, Jensch C et al (2022) Development of concepts for a climate-neutral chemical–pharmaceutical industry in 2045. Processes 10:1289. https://doi.org/10.3390/pr10071289

    Article  CAS  Google Scholar 

  64. Rosengarten JF, Stitz J, Hengelbrock A et al (2022) Digital Twin for HIV-gag VLP production in HEK293 cells. Chemie Ingenieur Technik 94:1280. https://doi.org/10.1002/cite.202255327

    Article  Google Scholar 

  65. Helgers H, Hengelbrock A, Schmidt A et al (2022) Process design and optimization towards Digital Twins for HIV-gag VLP production in HEK293 cells, including purification. Processes 10:419. https://doi.org/10.3390/pr10020419

    Article  CAS  Google Scholar 

  66. Rosengarten JF, Schatz S, Wolf T et al (2022) Components of a HIV-1 vaccine mediate virus-like particle (VLP)-formation and display of envelope proteins exposing broadly neutralizing epitopes. Virology 568:41–48. https://doi.org/10.1016/j.virol.2022.01.008

    Article  CAS  PubMed  Google Scholar 

  67. Defense Advanced Research Projects Agency (2017) Removing the viral threat: two months to stop pandemic X from taking hold: DARPA aims to develop an integrated end-to-end platform that uses nucleic acid sequences to halt the spread of viral infections in sixty days or less. https://www.darpa.mil/news-events/2017-02-06a. Accessed 08 Nov 2022

  68. Saied AA, Metwally AA, Dhawan M et al (2022) Strengthening vaccines and medicines manufacturing capabilities in Africa: challenges and perspectives. EMBO Mol Med 14:e16287. https://doi.org/10.15252/emmm.202216287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fahr S, Peña-Benavides SA, Thiel L et al (2022) Mobile on demand COVID-19 vaccine production units for developing countries. Ind Eng Chem Res 61:13191–13204. https://doi.org/10.1021/acs.iecr.2c01217

    Article  CAS  Google Scholar 

  70. Gürsel IV, Hessel V, Wang Q et al (2012) Window of opportunity – potential of increase in profitability using modular compact plants and micro-reactor based flow processing. Green Process Synth 1. https://doi.org/10.1515/gps-2012-0046

  71. European Medicines Agency (2021) Assessment report: Comirnaty. https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf. Accessed 08 Nov 2022

  72. Schmidt A, Helgers H, Vetter FL et al (2022) Process automation and control strategy by quality-by-design in total continuous mRNA manufacturing platforms. Processes 10:1783. https://doi.org/10.3390/pr10091783

    Article  CAS  Google Scholar 

  73. Vetter FL, Zobel-Roos S, Mota JPB et al (2022) Toward autonomous production of mRNA-therapeutics in the light of advanced process control and traditional control strategies for chromatography. Processes 10:1868. https://doi.org/10.3390/pr10091868

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the whole institutes team like Heribert Helgers for cell line development and upstream processing, Florian Vetter and Dr.-Ing. Steffen Zobel-Roos for continuous chromatography and Alex Juckers for lyophilization; Mourad Mouellef and Thomas Knebel for their endless automation efforts; the mechanical and electrical workshop with Nils Hoffmann and Volker Strohmeyer is thanked for their fast-track assembly of IVT and LNP units – under budgeting supervision of Claudia Lacheta; laboratory-head Frank Steinhäuser for his full-time trouble-shooting and total support. Prof. Dr. Martin Tegtmeier as qualified person for his regulatory guidance and supervision.

Conflicts of Interest

The authors declare no conflict of interest.

Ethical Approval Statement (If Required)

Not applicable/required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Strube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, A., Hengelbrock, A., Strube, J. (2023). Biopharma 4.0 for Biologics Manufacturing Under Pandemic Constraints. In: Pörtner, R. (eds) Biopharmaceutical Manufacturing. Cell Engineering, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-45669-5_10

Download citation

Publish with us

Policies and ethics