Skip to main content

Principles of Antiseptic Treatments

  • Chapter
  • First Online:
Pearls and Pitfalls in Skin Ulcer Management

Abstract

An antiseptic is defined as an agent able to inhibit the growth and development of microorganisms. These principles can be used on healthy skin, mucous membranes, and cavities or wounds and aim to the complete abolition of local bacterial load. This condition, also if not necessarily associated with an effective infection, has been related to a delay in wound healing or an increased risk of secondary infections. In this context, the main target of different antiseptics is considered to be biofilm. This protected environment inside which bacteria are able to replicate themselves sharing resistance mechanisms represents a bacterial method to maximize the hurtful effect and contemporarily reduce the control chances for host defenses. In the last centuries, huge steps forward have been achieved on the management of antisepsis trying to enhance the effectiveness of different compounds while selecting the substances with the most favorable side effect profiles. This incredibly wide range of possibilities should be adapted to the needs of the single patient to optimize the reliable results while controlling costs. This will allow us to better manage healthcare costs and to reduce patients’ expenditure in terms of quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strohal R, Apelqvist J, Dissemond J, et al. The EWMA document: debridement. J Wound Care. 2013;22(1 (Suppl.)):S1–S52.

    Article  PubMed  Google Scholar 

  2. Nakayama DK. Antisepsis and asepsis and how they shaped modern surgery. Am Surg. 2018;84:766–71.

    Article  PubMed  Google Scholar 

  3. Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory Committee (HICPAC). In guideline for disinfection and sterilization in healthcare facilities. Atlanta, GA: CDC; 2008.

    Google Scholar 

  4. Cruse PJE. History of surgical infection. In: Fry DE, editor. Surgical infections. Boston: Little, Brown; 1994. p. 3–10.

    Google Scholar 

  5. Torriani F, Taplitz R. History of infection prevention and control. Infect Dis. 2010:76–85.

    Google Scholar 

  6. Smith PW, Watkins K, Hewlett A. Infection control through the ages. Am J Infect Control. 2012;40(1):35–42.

    Article  PubMed  Google Scholar 

  7. Furley D, Wilkie J. Galen on respiration and the arteries. In: Princeton University Press, Bylebyl J, editors. 1979, William Harvey and his age. Baltimore: Johns Hopkins University Press; 1984.

    Google Scholar 

  8. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.

    Article  PubMed  Google Scholar 

  9. Hsiao CY, Hung CY, Tsai TH, Chak KF. A study of the wound healing mechanism of a traditional Chinese medicine, Angelica sinensis, using a proteomic approach. Evid Based Complement Alternat Med. 2012;2012:467531.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gottfried RS. Plague, public health and medicine in late medieval England. In: Bulst N, Delort R, editors. Maladies et société. XII ed. Paris: Editions du CNRS; 1989. p. 337–65.

    Google Scholar 

  11. Miller PJ. Semmelweis. Infect Control. 1982;3:405–9.

    Article  CAS  PubMed  Google Scholar 

  12. Best M, Neuhauser D. Ignaz Semmelweis and the birth of infection control. Qual Saf Health Care. 2004;13:233–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krasner RI. Pasteur: high priest of microbiology. ASM News. 1995;61:575–9.

    Google Scholar 

  14. Kaufmann SH. Robert Koch, the Nobel Prize, and the ongoing threat of tuberculosis. N Engl J Med. 2005;353:2423–6.

    Article  CAS  PubMed  Google Scholar 

  15. Pitt D, Aubin J-M. Joseph lister: father of modern surgery. Can J Surg. 2012;55:E8–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boyce JM. Best products for skin antisepsis. Am J Infect Control. 2019;47:17–22.

    Article  Google Scholar 

  17. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev. 2017;30:827–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonnell GE. Antisepsis, disinfection, and sterilization: types, action, and resistance. Washington, DC: ASM Press; 2007.

    Book  Google Scholar 

  20. McCoy WF, Bryers JD, Robbins J, Costerton JW. Observations of fouling biofilm formation. Can J Microbiol. 1981;27:910–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kaehn K. Polihexanide: a safe and highly effective biocide. Skin Pharmacol Physiol. 2010;23(suppl 1):7–16.

    Article  CAS  PubMed  Google Scholar 

  22. Robson M. Infection in the surgical patient: an imbalance in the normal equilibrium. Clin Plast Surg. 1979;6:493–503.

    Article  CAS  PubMed  Google Scholar 

  23. Heinzelmann M, Scott M, Lam T. Factors predisposing to bacterial invasion and infection. Am J Surg. 2002;183:179–90.

    Article  PubMed  Google Scholar 

  24. Kujath P, Michelsen A. Wounds—from physiology to wound dressing. Dtsch Arztebl Int. 2008;105:239–48.

    PubMed  PubMed Central  Google Scholar 

  25. Leaper D. Topical antiseptics in wound care: time for reflection. Int Wound J. 2011;8:547–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Claesen J. Topical antiseptics and the skin microbiota. J Investig Dermatol. 2018;138:2106–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sotto A, Richard JL, Combescure C, et al. Beneficial effects of implementing guidelines on microbiology and costs of infected diabetic foot ulcers. Diabetologia. 2010;53:2249–55.

    Article  CAS  PubMed  Google Scholar 

  28. Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol. 2000;182(10):2675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burmolle M, Thomsen TR, Fazli M, et al. Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol. 2010;59:324–36.

    Article  PubMed  Google Scholar 

  30. Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P. Efficacy of antiseptics containing povidone-iodine, Octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J. 2014;11:730–4.

    Article  PubMed  Google Scholar 

  31. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marzenna B, Anna R, Marek K, Anna P. Penetration of a selected antibiotic and antiseptic into a biofilm formed on orthopedic steel implants. Orthop Traumatol Rehabil. 2007;9:310–8.

    Google Scholar 

  33. White RJ, Cutting KF. Critical colonization—the concept under scrutiny. Ostomy Wound Manage. 2006;52(11):50–6.

    PubMed  Google Scholar 

  34. Kingsley A. A proactive approach to wound infection. Nurs Stand. 2001;15(30):50–8.

    Article  CAS  PubMed  Google Scholar 

  35. Dissemond J, Assadian O, Gerber V, et al. Classification of wounds at risk and their antimicrobial treatment with polihexanide: a practice-oriented expert recommendation. Skin Pharmacol Physiol. 2011;24:245–55.

    Article  CAS  PubMed  Google Scholar 

  36. Brown TS, Hawksworth JS, Sheppard FR, et al. Effect of a new silver dressings on chronic venous leg ulcers. Surg Infect. 2011;12:351–7.

    Article  Google Scholar 

  37. Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng R Rep. 2007;57:28–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bath MF, Davies J, Suresh R, Machesney MR. Surgical site infections: a scoping review on current intraoperative prevention measures. Ann R Coll Surg Engl. 2022;104(8):571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett. 2001;202:1–7.

    Article  CAS  PubMed  Google Scholar 

  40. Magee P. Antiseptic drugs and disinfectants. In: Aronson JK, editor. Side effects of drugs annual. Amsterdam, The Netherlands: Elsevier; 2010.; Chapter 24; Volume 32. p. 437–43.

    Google Scholar 

  41. Karpinski T, Sopata M, Mankowski B. The antimicrobial effectiveness of antiseptics as a challenge in hard to heal wounds. Leczenie Ran. 2020;17:88–94.

    Article  Google Scholar 

  42. Enzler MJ, Berbari E, Osmon DR. Antimicrobial prophylaxis in adults. Mayo Clin Proc. 2011;86:686–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gottrup F, Apelqvist J, Price P. Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care. 2010;19:239–68.

    Article  Google Scholar 

  44. Alvarez-Marin R, Aires-de-Sousa M, Nordmann P, Kieffer N, Poirel L. Antimicrobial activity of octenidine against multidrug-resistant gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017;36:2379–83.

    Article  CAS  PubMed  Google Scholar 

  45. Bond CJ. Remarks on the application of strong antiseptics to infected and non-infected wounds. Br Med J. 1915;1(2827):405–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maillard JY. Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Ther Clin Risk Manag. 2005;1:307–20.

    PubMed  PubMed Central  Google Scholar 

  47. Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol. 2002;31(Suppl):65S–71S.

    Article  CAS  Google Scholar 

  48. Punjataewakupt A, Napavichayanun S, Aramwit P. The downside of antimicrobial agents for wound healing. Eur J Clin Microbiol Infect Dis. 2019;38(1):39–54.

    Article  PubMed  Google Scholar 

  49. Fazli M, Bjarnsholt T, Kirketerp-Moller K, et al. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen. 2011;19:387–91.

    Article  PubMed  Google Scholar 

  50. Kirketerp-Møller K, Madsen K, Jensen P, et al. The distribution, organization and ecology of bacteria in chronic wounds. J Clin Microbiol. 2008;46:2717–22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pagès JM, Maillard JY, Davin-Regli A, Springthorpe S. Microbicides—the double-edged sword: environmental toxicity and emerging resistance. In: Fraise AP, Maillard J-Y, Sattar A, editors. Russell, Hugo and Ayliffe’s principles and practice of disinfection, preservation and sterilization. 5th ed. Wiley-Blackwell; 2013.

    Google Scholar 

  52. Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014;7(11):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee DH, Vielemeyer O. Analysis of overall level of evidence behind Infectious Diseases Society of America practice guidelines. Arch Intern Med. 2011;171:18–22.

    Article  PubMed  Google Scholar 

  54. Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009;49:1541–9.

    Article  PubMed  Google Scholar 

  55. Warren SJ. The use of topical antimicrobials and antibiotics in wound care. Adv Wound Care. 2011;2:219–24.

    Google Scholar 

  56. Scalise A, Falcone M, Avruscio G, Brocco E, Ciacco E, Parodi A, Tasinato R, Ricci E. What COVID-19 taught us: new opportunities and pathways from telemedicine and novel antiseptics in wound healing. Int Wound J. 2022;19(5):987–95.

    Article  PubMed  Google Scholar 

  57. Aisa J, Parlier M. Local wound management: a review of modern techniques and products. Vet Dermatol. 2022;33(5):463–78.

    Article  PubMed  Google Scholar 

  58. Venter H, Henningsen ML, Begg SL. Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines. Venter H, editor. Essays Biochem. 2017;61(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56(1):20–51.

    Article  CAS  PubMed  Google Scholar 

  60. Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J. 2021;18(3):342–58.

    Article  PubMed  Google Scholar 

  61. Zinn J, Jenkins JB, Swofford V, Harrelson B, McCarter S. Intraoperative patient skin prep agents: is there a difference? AORN J. 2010;92:662–74.

    Article  PubMed  Google Scholar 

  62. de Lissovoy G, Fraeman K, Hutchins V, et al. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37:387–97.

    Article  PubMed  Google Scholar 

  63. Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, Reinke CE, Morgan S, Solomkin JS, Mazuski JE, et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017;152:784–91.

    Article  PubMed  Google Scholar 

  64. Mangram A, Horan T, Pearson M, Silver L, Jarvis W. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78.

    Article  CAS  PubMed  Google Scholar 

  65. Dumville JC, McFarlane E, Edwards P, Lipp A, Holmes A, Liu Z. Preoperative skin antiseptics for preventing surgical wound infections after clean surgery. Cochrane Database Syst Rev. 2015;(4):CD003949. https://doi.org/10.1002/14651858.CD003949.pub4.

  66. Edmonds M, Foster A. The use of antibiotics in the diabetic foot. Am J Surg. 2004;187(5A (Suppl.)):25S–8S.

    Article  CAS  PubMed  Google Scholar 

  67. Diana M, Hubner M, Eisenring MC, et al. Measures to prevent surgical site infections: what surgeons (should) do. World J Surg. 2011;35:280–8.

    Article  PubMed  Google Scholar 

  68. Perencevich EN, Sands KE, Cosgrove SE, et al. Health and economic impact of surgical site infections diagnosed after hospital discharge. Emerg Infect Dis. 2003;9:196–203.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zöllner H, Kramer A, Youssef P, Youssef U, Adrian V. Preliminary investigations on the biodegradability of selected microbicidal agents. Hyg Med. 1995;20:401–7.

    Google Scholar 

  70. Freise J, Kohaus S, Korber A, Hillen U, Kroger K, Grabbe S, Dissemond J. Contact sensitization in patients with chronic wounds: results of a prospective investigation. J Eur Acad Dermatol Venereol. 2008;22:1203–7.

    Article  CAS  PubMed  Google Scholar 

  71. Edmonds M. Facts that every vascular surgeon needs to know about the diabetic foot. J Cardiovasc Surg. 2014;55(2 Suppl 1):255–63.

    CAS  Google Scholar 

  72. Langer S, Sedigh Salakdeh M, Goertz O, Steinau HU, Steinstraesser L, Homann HH. The impact of topical antiseptics on skin microcirculation. Eur J Med Res. 2004;9:449–54.

    CAS  PubMed  Google Scholar 

  73. Müller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother. 2008;61:1281–7.

    Article  PubMed  Google Scholar 

  74. Health Quality Ontario. Management of chronic pressure ulcers: an evidence-based analysis. Ont Health Technol Assess Ser. 2009;9(3):1–203.

    Google Scholar 

  75. Game FL, Hinchliffe RJ, Apelqvist J, et al. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev. 2012;28(Suppl. 1):119–41.

    Article  PubMed  Google Scholar 

  76. Chen W, Xu K, Zhang H, et al. A comparative study on effect of bacterial load in diabetic foot ulcers dealing with iodophor and rivanol respectively [in Chinese]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2008;22:567–70.

    CAS  PubMed  Google Scholar 

  77. Zelver N, Hamilton M, Pitts B, et al. Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol. 1999;310:608–28.

    Article  CAS  PubMed  Google Scholar 

  78. Rayman, et al. Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes. Diab Metab Res Rev. 2020:e3283.

    Google Scholar 

  79. Ceri H, Olson ME, Stremick C, et al. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37:1771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vanzi V, Pitaro R. Skin injuries and chlorhexidine gluconate-based antisepsis in early premature infants: a case report and review of the literature. J Perinat Neonatal Nurs. 2018;32(4):341–50.

    Article  PubMed  Google Scholar 

  82. Tanzer JM, Slee AM, Kamay BA. Structural requirements of guanide, biguanide, and bisbiguanide agents for antiplaque activity. Antimicrob Agents Chemother. 1977;12:721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bashir MH, Hollingsworth A, Schwab D, Prinsen KS, Paulson JE, Morse DJ, Bernatchez SF. Ex vivo and in vivo evaluation of residual chlorhexidine gluconate on skin following repetitive exposure to saline and wiping with 2% chlorhexidine gluconate/70% isopropyl alcohol pre-operative skin preparations. J Hosp Infect. 2019;102:256–61.

    Article  CAS  PubMed  Google Scholar 

  84. Hann S, Hughes TM, Stone NM. Flexural allergic contact dermatitis to benzalkonium chloride in antiseptic bath oil. Br J Dermatol. 2007;157(4):795–8.

    Article  CAS  PubMed  Google Scholar 

  85. Rohrer N, Widmer AF, Waltimo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, Walter C. Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or citroxx: can chlorhexidine be replaced? Infect Control Hosp Epidemiol. 2010;31:733–9.

    Article  PubMed  Google Scholar 

  86. Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A. Standardized comparison of antiseptic efficacy of triclosan, PVP–iodine, Octenidine dihydrochloride, polyhexanide and chlorhexidine Digluconate. J Antimicrob Chemother. 2010;65:1712–9.

    Article  CAS  PubMed  Google Scholar 

  87. Beaudouin E, Kanny G, Morisset M, Renaudin JM, Mertes M, Laxenaire MC, Mouton C, Jacson F, Moneret-Vautrin DA. Immediate hypersensitivity to chlorhexidine: literature review. Eur Ann Allergy Clin Immunol. 2004;36(4):123–6.

    CAS  PubMed  Google Scholar 

  88. Wessels S, Ingmer H. Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol. 2013;67(3):456–67.

    Article  CAS  PubMed  Google Scholar 

  89. Krautheim AB, Jermann TH, Bircher AJ. Chlorhexidine anaphylaxis: case report and review of the literature. Contact Dermatitis. 2004;50:113–6.

    Article  CAS  PubMed  Google Scholar 

  90. Darouiche RO, Wall MJ, Itani KM, Otterson MF, Webb AL, Carrick MM, Miller HJ, Awad SS, Crosby CT, Mosier MC, Alsharif A, Berger DH. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med. 2010;362(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  91. Durani P, Leaper D. Povidone-iodine: use in hand disinfection, skin preparation and antiseptic irrigation. Int Wound J. 2008;5(3):376–87.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wutzler P, Sauerbrei A, Klocking R, Brogmann B, Reimer K. Virucidal activity and cytotoxicity of the liposomal formulation of povidone-iodine. Antivir Res. 2002;54(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  93. Barreto R, Barrois B, Lambert J, Malhotra-Kumar S, Santos-Fernandes V, Monstrey S. Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents. 2020;56(3):106064.

    Article  CAS  PubMed  Google Scholar 

  94. Capriotti KD, Anadkat M, Choi J, Kaffenberger B, McLellan B, Barone S, Kukoyi O, Goldfarb S, Lacouture M. A randomized phase 2 trial of the efficacy and safety of a novel topical povidone-iodine formulation for cancer therapy-associated paronychia. Investig New Drugs. 2019;37:1247–56.

    Article  CAS  Google Scholar 

  95. Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon JK, Wa CTC, Villa MA. Povidone iodine in wound healing: a review of current concepts and practices. Int J Surg. 2017;44:260–8.

    Article  PubMed  Google Scholar 

  96. Jalil A, Matuszczak B, Nguyen Le N-M, Mahmood A, Laffleur F, Bernkop-Schnürch A. Synthesis and characterization of thiolated pvp-iodine complexes: key to highly mucoadhesive antimicrobial gels. Mol Pharm. 2018;15:3527–34.

    Article  CAS  PubMed  Google Scholar 

  97. Macias JH, Alvarez MF, Arreguin V, Muñoz JM, Macias AE, Alvarez JA. Chlorhexidine avoids skin bacteria recolonization more than triclosan. Am J Infect Control. 2016;44:1530–4.

    Article  CAS  PubMed  Google Scholar 

  98. Lachapelle JM. Allergic contact dermatitis from povidone-iodine: a re-evaluation study. Contact Dermatitis. 2005;52(1):9–10.

    Article  CAS  PubMed  Google Scholar 

  99. Sibbald RG, Coutts P, Woo KY. Reduction of bacterial burden and pain in chronic wounds using a new polyhexamethylene biguanide antimicrobial foam dressing-clinical trial results. Adv Skin Wound Care. 2011;24:78–84.

    Article  PubMed  Google Scholar 

  100. Hübner NO, Kramer A. Review on the efficacy, safety and clinical applications of Polihexanide, a modern wound antiseptic. Skin Pharmacol Physiol. 2010;23:17–27.

    Article  PubMed  Google Scholar 

  101. Yanai R, Ueda K, Nishida T, Toyohara M, Mori O. Effects of ionic and surfactant agents on the antimicrobial activity of polyhexamethylene biguanide. Eye Contact Lens. 2011;37:85–9.

    Article  PubMed  Google Scholar 

  102. Krebs FC, Miller SR, Ferguson ML, Labib M, Rando RF, Wigdahl B. Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomed Pharmacother. 2005;59:438–45.

    Article  CAS  PubMed  Google Scholar 

  103. Valluri S, Fleming TP, Laycock KA, Tarle IS, Goldberg MA, Garcia-Ferrer FJ, Essary LR, Pepose JS. In vitro and in vivo effects of polyhexamethylene biguanide against herpes simplex virus infection. Cornea. 1997;16:556–9.

    Article  CAS  PubMed  Google Scholar 

  104. Broxton P, Woodcock PM, Gilbert P. Injury and recovery of Escherichia coli ATCC 8,739 from treatment with some polyhexamethylene biguanides. Microbios. 1984;40:187–93.

    CAS  PubMed  Google Scholar 

  105. Harbs N, Siebert J. In vitro efficacy of octenidine and polihexanide against biofilms composed of Pseudomonas aeruginosa. GMS Krankenh Interdiszip. 2007;2:45.

    Google Scholar 

  106. Olivieri J, Eigenmann PA, Hauser C. Severe anaphylaxis to a new disinfectant: polihexanide, a chlorhexidine polymer. Schweiz Med Wochenschr. 1998;128:1508–11.

    CAS  PubMed  Google Scholar 

  107. Ferrarini A, Baggi M, Fluckiger R, Bianchetti MG. Intraoperative anaphylaxis to a chlorhexdine polymer in childhood. Paediatr Anaesth. 2006;16:705.

    Article  PubMed  Google Scholar 

  108. Storm-Versloot MN, Vos CG, Ubbink DT, Vermeulen H. Topical silver for preventing wound infection. Cochrane Database Syst Rev. 2010;3:CD006478.

    Google Scholar 

  109. Vermeulen H, van Hattem J, Storm-Versloot MN, et al. Topical silver for treating infected wounds. Cochrane Database Syst Rev. 2007;1:CD005486.

    Google Scholar 

  110. Graham C. The role of silver in wound healing. Br J Nurs. 2005;14:S22–8.

    Article  PubMed  Google Scholar 

  111. Lo SF, Hayter M, Chang CJ, et al. A systematic review of silver-releasing dressings in the management of infected chronic wounds. J Clin Nurs. 2008;17:1973–85.

    Article  PubMed  Google Scholar 

  112. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Randall CP, Gupta A, Jackson N, Busse D, O'Neill AJ. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70(4):1037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lansdown A. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34.

    Article  CAS  PubMed  Google Scholar 

  115. Panacek A, Kvitek L, Smekalova M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  116. Lansdown AB. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci. 2010;2010:910686.

    PubMed  PubMed Central  Google Scholar 

  117. Murphy EC, Friedman AJ. Hydrogen peroxide and cutaneous biology: translational applications, benefits, and risks. J Am Acad Dermatol. 2019;81(6):1379–86.

    Article  CAS  PubMed  Google Scholar 

  118. Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol. 1996;178(21):6145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Setlow B, Setlow P. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl Environ Microbiol. 1993;59(10):3418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou XQ, Xie WG. Research advances on the effect of hydrogen peroxide in wound healing. Zhonghua Shao Shang Za Zhi. 2020;36(11):1083–6.

    CAS  PubMed  Google Scholar 

  121. Iacopi E, Abbruzzese L, Goretti C, Riitano N, Piaggesi A. The use of a novel super-oxidized solution on top of standard treatment in the home care management of postsurgical lesions of the diabetic foot reduces reinfections and shortens healing time. Int J Low Extrem Wounds. 2018;17(4):268–74.

    Article  PubMed  Google Scholar 

  122. Salisbury AM, Percival SL. The efficacy of an electrolysed water formulation on biofilms. Adv Exp Med Biol. 2019;1214:1–8.

    CAS  PubMed  Google Scholar 

  123. Piaggesi A, Goretti C, Mazzurco S, et al. A randomized controlled trial to examine the efficacy and safety of a new super-oxidized solution for the management of wide post-surgical lesions on the diabetic foot. Int J Low Extrem Wounds. 2010;9:10–5.

    Article  CAS  PubMed  Google Scholar 

  124. Aragón-Sánchez J, Lázaro-Martínez JL, Quintana-Marrero Y, Sanz-Corbalán I, Hernández-Herrero MJ, Cabrera-Galván JJ. Super-oxidized solution (Dermacyn wound care) as adjuvant treatment in the postoperative management of complicated diabetic foot osteomyelitis: preliminary experience in a specialized department. Int J Low Extrem Wounds. 2013;12(2):130–7.

    Article  PubMed  Google Scholar 

  125. D'Atanasio N, Capezzone de Joannon A, Mangano G, et al. A new acid-oxidizing solution: assessment of its role on methicillin-resistant Staphylococcus aureus (MRSA) biofilm morphological changes. Wounds. 2015;27(10):265–73.

    PubMed  Google Scholar 

  126. Ricci E. The management of chronic ulcers with an acidoxidising solution. J Wound Care. 2016;25(8):443–50.

    Article  CAS  PubMed  Google Scholar 

  127. Hadi SF, Khaliq T, Bilal N, Sikandar I, Saaiq M, Zubair M, Aurangzeb S. Treating infected diabetic wounds with superoxidized water as anti-septic agent : a preliminary experience. J Coll Physicians Surg Pak. 2007;17(12):740–3.

    PubMed  Google Scholar 

  128. Martinez-De Jesus FR, Ramos De la Medina A, Remes-Troche JM, et al. Efficacy and safety of neutral pH superoxidised solution in severe diabetic foot infections. Int Wound J. 2007;4:353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  129. De Angelis B, Lucarini L, Agovino A, et al. Combined use of super-oxidized solution with negative pressure for the treatment of pressure ulcers: case report. Int Wound J. 2012;24

    Google Scholar 

  130. Bahari N, Hashim N, Md Akim A, Maringgal B. Recent advances in honey-based nanoparticles for wound dressing: a review. Nano. 2022;12:2560.

    CAS  Google Scholar 

  131. Tashkandi H. Honey in wound healing: an updated review. Open Life Sci. 2021;16(1):1091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yilmaz AC, Aygin D. Honey dressing in wound treatment: a systematic review. Complement Ther Med. 2020;51:102388.

    Article  PubMed  Google Scholar 

  133. Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J Tissue Viability. 2016;25:98–118.

    Article  PubMed  Google Scholar 

  134. Smaropoulos E, Cremers NAJ. Treating severe wounds in pediatrics with medical grade honey: a case series. Clin Case Rep. 2020;8:469–76.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Angioi R, Morrin A, White B. The rediscovery of honey for skin repair: recent advances in mechanisms for honeymediatedwound healing and scaffolded application techniques. Appl Sci. 2021;11:5192.

    Article  CAS  Google Scholar 

  136. Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of honey in advanced wound care. Molecules. 2021;26:4784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nolan VC, Harrison J, Cox JAG. Dissecting the antimicrobial composition of honey. Antibiotics. 2019;8:251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cebrero G, Sanhueza O, Pezoa M, Báez ME, Martínez J, Báez M, Fuentes E. Relationship among the minor constituents, antibacterial activity and geographical origin of honey: a multifactor perspective. Food Chem. 2020;315:126296.

    Article  CAS  PubMed  Google Scholar 

  139. Yupanqui Mieles J, Vyas C, Aslan E, Humphreys G, Diver C, Bartolo P. Honey: an advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics. 2022;14:1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Critchfield JW, Butera ST, Folks TM. Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retrovir. 1996;12:39–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iacopi, E., Giangreco, F., Piaggesi, A. (2023). Principles of Antiseptic Treatments. In: Maruccia, M., Papa, G., Ricci, E., Giudice, G. (eds) Pearls and Pitfalls in Skin Ulcer Management. Springer, Cham. https://doi.org/10.1007/978-3-031-45453-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45453-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45452-3

  • Online ISBN: 978-3-031-45453-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics