Skip to main content

Electrochemical Properties of Metal Hydroxides

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 211 Accesses

Abstract

The electrochemical capacitor has received remarkable attention due to its bridging performance for the power/energy interval between conventional capacitors and batteries/fuel cells. The electrochemical behavior of capacitors is mainly influenced by using electrode materials. One of the promising pseudocapacitive materials is metal hydroxide, whose electrochemical performances originated from reversible Faradaic reactions between the electrode and electrolyte interface. It is necessary to use advanced pseudocapacitive materials to manufacture supercapacitors to solve their problem of lower energy density (E) compared to lithium batteries. Different strategies, such as doping, various synthesis methods, fabrication of composites, and utilization of conductive substrates, have been introduced. This chapter represents investigations on pseudocapacitive electrode materials, essentially transition metal hydroxides. Some published reports about applications of metal hydroxides as pseudocapacitive electrode materials with their different structures and composites are summarized in this chapter. Some strategies to improve the electrochemical performance of transition metal hydroxides are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Xiong, K. Hembram, R.G. Reifenberger, T.S. Fisher, MnO2-coated graphitic petals for supercapacitor electrodes. J. Power Sourc. 227, 254–259 (2013)

    Article  CAS  Google Scholar 

  2. H.Y. Lee, S.W. Kim, H.Y. Lee, Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochem. Solid-State Lett. 4, A19 (2001)

    Article  CAS  Google Scholar 

  3. X. Cai, S.H. Lim, C.K. Poh, L. Lai, J. Lin, Z. Shen, High-performance asymmetric pseudocapacitor cell based on cobalt hydroxide/graphene and polypyrrole/graphene electrodes. J. Power Sourc. 275, 298–304 (2015)

    Article  CAS  Google Scholar 

  4. D.-D. Zhao, S.-J. Bao, W.-J. Zhou, H.-L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 9, 869–874 (2007)

    Article  CAS  Google Scholar 

  5. D.-S. Kong, J.-M. Wang, H.-B. Shao, J.-Q. Zhang, C. Cao, Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance. J. Alloy. Compd. 509, 5611–5616 (2011)

    Article  CAS  Google Scholar 

  6. A. Shaikh, B.K. Singh, K. Purnendu, P. Kumari, P.R. Sankar, G. Mundra, S. Bohm, Utilization of the nickel hydroxide derived from a spent electroless nickel plating bath for energy storage applications. RSC Sustain. (2023)

    Google Scholar 

  7. P.E. Lokhande, K. Pawar, U.S. Chavan, Chemically deposited ultrathin α-Ni(OH)2 nanosheet using surfactant on Ni foam for high performance supercapacitor application. Mater. Sci. Energy Technol. 1, 166–170 (2018)

    Google Scholar 

  8. X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11, 154–161 (2015)

    Article  CAS  Google Scholar 

  9. A.V. Radhamani, M.K. Surendra, M.S.R. Rao, Tailoring the supercapacitance of Mn2O3 nanofibers by nanocompositing with spinel-ZnMn2O4. Mater. Des. 139, 162–171 (2018)

    Article  CAS  Google Scholar 

  10. R.M. Obodo, N.M. Shinde, U.K. Chime, S. Ezugwu, A.C. Nwanya, I. Ahmad, M. Maaza, P.M. Ejikeme, F.I. Ezema, Recent advances in metal oxide/hydroxide on three-dimensional nickel foam substrate for high performance pseudocapacitive electrodes. Curr. Opin. Electrochem. 21, 242–249 (2020)

    Article  CAS  Google Scholar 

  11. H.B. Li, M.H. Yu, X.H. Lu, P. Liu, Y. Liang, J. Xiao, Y.X. Tong, G.W. Yang, Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 745–749 (2014)

    Article  CAS  Google Scholar 

  12. M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S. Senyarich, Structural defects and electrochemical reactivity of β-Ni(OH)2. J. Power Sourc. 63, 247–254 (1996)

    Article  CAS  Google Scholar 

  13. Z. Tian, C. Liang, J. Liu, H. Zhang, L. Zhang, Reactive and photocatalytic degradation of various water contaminants by laser ablation-derived SnOx nanoparticles in liquid. J. Mater. Chem. 21, 18242–18247 (2011)

    Article  CAS  Google Scholar 

  14. D. Liang, S. Wu, J. Liu, Z. Tian, C. Liang, Co-doped Ni hydroxide and oxide nanosheet networks: laser-assisted synthesis, effective doping, and ultrahigh pseudocapacitor performance. J. Mater. Chem. A 4, 10609–10617 (2016)

    Article  CAS  Google Scholar 

  15. Y.J. Mai, J.P. Tu, X.H. Xia, C.D. Gu, X.L. Wang, Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries. J. Power Sourc. 196, 6388–6393 (2011)

    Article  CAS  Google Scholar 

  16. X. Liu, R. Ma, Y. Bando, T. Sasaki, A general strategy to layered transition-metal hydroxide nanocones: tuning the composition for high electrochemical performance. Adv. Mater. 24, 2148–2153 (2012)

    Article  CAS  Google Scholar 

  17. X. Ma, J. Liu, C. Liang, X. Gong, R. Che, A facile phase transformation method for the preparation of 3D flower-like β-Ni(OH)2/GO/CNTs composite with excellent supercapacitor performance. J. Mater. Chem. A 2, 12692–12696 (2014)

    Article  CAS  Google Scholar 

  18. Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47, 9651–9653 (2011)

    Article  CAS  Google Scholar 

  19. G. Lee, C.V. Varanasi, J. Liu, Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7, 3181–3188 (2015)

    Article  CAS  Google Scholar 

  20. X. Ma, Y. Li, Z. Wen, F. Gao, C. Liang, R. Che, Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials. ACS Appl. Mater. Interfaces. 7, 974–979 (2015)

    Article  CAS  Google Scholar 

  21. X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J. Phys. Chem. C 115, 22662–22668 (2011)

    Article  CAS  Google Scholar 

  22. D. Xia, H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, J. Yu, Facilely synthesized α phase nickel–cobalt bimetallic hydroxides: Tuning the composition for high pseudocapacitance. Electrochim. Acta 156, 108–114 (2015)

    Article  CAS  Google Scholar 

  23. H.-Y. Hsu, K.-H. Chang, R.R. Salunkhe, C.-T. Hsu, C.-C. Hu, Synthesis and characterization of mesoporous Ni–Co oxy-hydroxides for pseudocapacitor application. Electrochim. Acta 94, 104–112 (2013)

    Article  CAS  Google Scholar 

  24. R.R. Salunkhe, K. Jang, S. Lee, H. Ahn, Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Adv. 2, 3190–3193 (2012)

    Article  CAS  Google Scholar 

  25. H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, Y. Ruan, D. Xia, One-pot fabrication of layered α-phase nickel-cobalt hydroxides as advanced electrode materials for pseudocapacitors. ChemPlusChem. 80, 181–187 (2015)

    Article  CAS  Google Scholar 

  26. Y. Zhang, Z. Shi, L. Liu, Y. Gao, J. Liu, High conductive architecture: bimetal oxide with metallic properties@ bimetal hydroxide for high-performance pseudocapacitor. Electrochim. Acta 231, 487–494 (2017)

    Article  CAS  Google Scholar 

  27. G. Xiong, P. He, L. Liu, T. Chen, T.S. Fisher, Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes. J. Mater. Chem. A 3, 22940–22948 (2015)

    Article  CAS  Google Scholar 

  28. G. Xiong, K. Hembram, D.N. Zakharov, R.G. Reifenberger, T.S. Fisher, Controlled thin graphitic petal growth on oxidized silicon. Diam. Relat. Mater. 27, 1–9 (2012)

    Article  Google Scholar 

  29. C. Choi, H.J. Sim, G.M. Spinks, X. Lepró, R.H. Baughman, S.J. Kim, Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv. Energy Mater. 6, 1502119 (2016)

    Article  Google Scholar 

  30. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013)

    Article  CAS  Google Scholar 

  31. D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.-H. Lee, H. Ahn, S.-H. Han, Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater. 153, 163–165 (2012)

    Article  CAS  Google Scholar 

  32. K. Zhang, Q. Xu, X. Liu, J. Zhang, Y. Xu, M. Zhou, J. Li, M. Du, X. Qian, B. Xu, A ship-in-a-bottle architecture transmission metal hydroxides@ conducting MOF on carbon nanotube yarn for ultra-stable quasi-solid-state supercapacitors. J. Mater. Chem. A (2023)

    Google Scholar 

  33. W. Liu, X. Hu, H. Li, H. Yu, Pseudocapacitive Ni–Co–Fe Hydroxides/N-doped carbon nanoplates-based electrocatalyst for efficient oxygen evolution. Small 14, 1801878 (2018)

    Article  Google Scholar 

  34. P. Sun, R. Ma, X. Bai, K. Wang, H. Zhu, T. Sasaki, Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. Sci. Adv. 3, e1602629 (2017)

    Article  Google Scholar 

  35. M.A. Woo, M.-S. Song, T.W. Kim, I.Y. Kim, J.-Y. Ju, Y.S. Lee, S.J. Kim, J.-H. Choy, S.-J. Hwang, Mixed valence Zn–Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality. J. Mater. Chem. 21, 4286–4292 (2011)

    Article  CAS  Google Scholar 

  36. J. Yingchang, S. Yun, L. Yanmei, T. Wenchao, P. Zhichang, Y. Peiyu, L. Yuesheng, G. Qinfen, H. Linfeng, Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance (2017)

    Google Scholar 

  37. H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Func. Mater. 24, 934–942 (2014)

    Article  Google Scholar 

  38. Z. Pan, Y. Jiang, P. Yang, Z. Wu, W. Tian, L. Liu, Y. Song, Q. Gu, D. Sun, L. Hu, In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12, 2968–2979 (2018)

    Article  CAS  Google Scholar 

  39. N. Mahmood, M. Tahir, A. Mahmood, W. Yang, X. Gu, C. Cao, Y. Zhang, Y. Hou, Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene. Sci. China Mater. 58, 114–125 (2015)

    Article  CAS  Google Scholar 

  40. T. Xu, X. Wu, Y. Li, W. Xu, Z. Lu, Y. Li, X. Lei, X. Sun, Morphology and phase evolution of CoAl layered double hydroxides in an alkaline environment with enhanced pseudocapacitive performance. ChemElectroChem. 2, 679–683 (2015)

    Article  CAS  Google Scholar 

  41. X. Wu, Z. Zhao, B. Huang, 0CoP-Doped nickel aluminum double hydroxide as superior electrode for boosting pseudocapacitive storage. Electrochim. Acta 361, 137092 (2020)

    Article  CAS  Google Scholar 

  42. J. Cha, E.B. Park, S.W. Han, Y.D. Kim, D. Jung, Core‐shell structured cobalt sulfide/cobalt aluminum hydroxide nanosheet arrays for pseudocapacitor application. Chem.—Asian J. 14 (2019) 446–453.

    Google Scholar 

  43. X. Hao, Y. Zhang, Z. Diao, H. Chen, A. Zhang, Z. Wang, Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors. RSC Adv. 4, 63901–63908 (2014)

    Article  CAS  Google Scholar 

  44. B. Wang, G.R. Williams, Z. Chang, M. Jiang, J. Liu, X. Lei, X. Sun, Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties. ACS Appl. Mater. Interfaces. 6, 16304–16311 (2014)

    Article  CAS  Google Scholar 

  45. Y. Gu, Z. Lu, Z. Chang, J. Liu, X. Lei, Y. Li, X. Sun, NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. J. Mater. Chem. A 1, 10655–10661 (2013)

    Article  CAS  Google Scholar 

  46. G. Li, X. Zhang, D. Qiu, Z. Liu, C. Yang, C.B. Cockreham, B. Wang, L. Fu, J. Zhang, B. Sudduth, Tuning Ni/Al ratio to enhance pseudocapacitive charge storage properties of nickel–aluminum layered double hydroxide. Adv. Electron. Mater. 5, 1900215 (2019)

    Article  Google Scholar 

  47. I. Lee, G.H. Jeong, S. An, S.-W. Kim, S. Yoon, Facile synthesis of 3D MnNi-layered double hydroxides (LDH)/graphene composites from directly graphites for pseudocapacitor and their electrochemical analysis. Appl. Surf. Sci. 429, 196–202 (2018)

    Article  CAS  Google Scholar 

  48. X. Ge, C.D. Gu, X.L. Wang, J.P. Tu, Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials. J. Mater. Chem. A 2, 17066–17076 (2014)

    Article  CAS  Google Scholar 

  49. P. Huang, C. Cao, Y. Sun, S. Yang, F. Wei, W. Song, One-pot synthesis of sandwich-like reduced graphene oxide@ CoNiAl layered double hydroxide with excellent pseudocapacitive properties. J. Mater. Chem. A 3, 10858–10863 (2015)

    Article  CAS  Google Scholar 

  50. J. Zou, J. Zou, W. Zhong, Q. Liu, X. Huang, Y. Gao, L. Lu, S. Liu, PEDOT coating boosted NiCo-LDH nanocage on CC enable high-rate and durable pseudocapacitance reaction. J. Electroanal. Chem. 928, 117069 (2023)

    Article  CAS  Google Scholar 

  51. D.S. Patil, S.A. Pawar, J.C. Shin, H.J. Kim, Layered double hydroxide based on ZnCo@ NiCo-nano-architecture on 3D graphene scaffold as an efficient pseudocapacitor. J. Power Sourc. 435, 226812 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazloum Ardakani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadian Sarcheshmeh, H., Mazloum Ardakani, M. (2024). Electrochemical Properties of Metal Hydroxides. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_7

Download citation

Publish with us

Policies and ethics