Skip to main content

Pseudocapacitive Materials for Metal-Sulfur Batteries

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 223 Accesses

Abstract

Alkali metal-sulfur batteries have developed profound interest among researchers due to their high theoretical energy density (>2500 Wh kg−1). However, their commercial exploitation potential is hindered due to the lower electronic conductivity of sulfur and other discharging products, deteriorating polysulfide shuttling, and substantial volume variations during discharging. Pseudocapacitive materials can address these issues. Their superior intrinsic properties, such as higher electronic conductivity, better ionic conduction, and abundant functional groups that, trap polysulfides and make them suitable candidates for batteries. Pseudocapacitive materials such as layered transition metal oxides (TMOs), phosphides (TMPs), chalcogenides (TMCs), MXenes, etc. have the metal center acting as Lewis’s entity to attract polysulfide anions. In contrast, the anionic species, such as oxides/phosphides and chalcogens, react with metal ions (Li, Na, and K) to provide the synergetic effect. This chapter discusses the benefits of using these materials for metal-sulfur batteries and associated challenges in a detailed manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Wang, H.M. Kim, Y. Xiao, Y.K. Sun, Nanostructured metal phosphide-based materials for electrochemical energy storage. J. Mater. Chem. A 4, 14915–14931 (2016). https://doi.org/10.1039/c6ta06705k

    Article  CAS  Google Scholar 

  2. K. Kisu, S. Kim, R. Yoshida, H. Oguchi, N. Toyama, S. Orimo, Microstructural analyses of all-solid-state Li–S batteries using LiBH4-based solid electrolyte for prolonged cycle performance. J. Energy Chem. 50, 424–429 (2020). https://doi.org/10.1016/j.jechem.2020.03.069

    Article  Google Scholar 

  3. H. Fan, W. Luo, S. Dou, Z. Zheng, Advanced two-dimensional materials toward polysulfides regulation of metal–sulfur batteries. SmartMat 1–30 (2023). https://doi.org/10.1002/smm2.1186

  4. M. Salama, A.R. Rosy, R. Yemini, Y. Gofer, D. Aurbach, M. Noked, Metal-sulfur batteries: overview and research methods. ACS Energy Lett. 4, 436–446 (2019). https://doi.org/10.1021/acsenergylett.8b02212

    Article  CAS  Google Scholar 

  5. K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li, S. Xu, Y. Wen, L. Zhang, C. Wang, G. Pastel, J. Dai, B. Liu, H. Xie, Y. Yao, E.D. Wachsman, L. Hu, Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017). https://doi.org/10.1039/c7ee01004d

    Article  CAS  Google Scholar 

  6. D. Sui, L. Si, C. Li, Y. Yang, Y. Zhang, W. Yan, A comprehensive review of graphene-based anode materials for lithium-ion capacitors. Chemistry (Easton) 3, 1215–1246 (2021). https://doi.org/10.3390/chemistry3040089

    Article  CAS  Google Scholar 

  7. Q. Liu, X. Han, Q. Dou, P. Xiong, Y. Kang, S.-W. Kang, B.-K. Kim, H.S. Park, Multiphase and multicomponent nickel-iron oxide heterostructure as an efficient separator modification layer for advanced lithium sulfur batteries. Batter. Supercaps 4, 1843–1849 (2021). https://doi.org/10.1002/batt.202100156

  8. R. Vishnoi, K. Sharma, Y.S. Yogita, R. Singhal, Investigation of sequential thermal annealing effect on Cu-C70 nanocomposite thin film. Thin Solid Films 680, 75–80 (2019). https://doi.org/10.1016/j.tsf.2019.04.004

    Article  CAS  Google Scholar 

  9. V. Marangon, E. Scaduti, V.F. Vinci, J. Hassoun, Scalable composites benefiting from transition-metal oxides as cathode materials for efficient lithium-sulfur batteries. ChemElectroChem 9, e202200374 (2022). https://doi.org/10.1002/celc.202200374

    Article  CAS  Google Scholar 

  10. J. Xie, X. Luo, L. Chen, X. Gong, L. Zhang, J. Tian, ZIF-8 derived boron, nitrogen co-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: performance, mechanism and biotoxicity. Chem. Eng. J. 440, 135760 (2022). https://doi.org/10.1016/j.cej.2022.135760

    Article  CAS  Google Scholar 

  11. X. Kang, Z. Jin, H. Peng, Z. Cheng, L. Liu, X. Li, L. Xie, J. Zhang, Y. Dong, The role of selenium vacancies functionalized mediator of bimetal (Co, Fe) selenide for high-energy–density lithium-sulfur batteries. J. Colloid Interface Sci. 637, 161–172 (2023). https://doi.org/10.1016/j.jcis.2023.01.090

    Article  CAS  Google Scholar 

  12. P. Han, S.H. Chung, A. Manthiram, Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Mater. 17, 317–324 (2019). https://doi.org/10.1016/j.ensm.2018.11.002

    Article  Google Scholar 

  13. J. Wen, L. Huang, Y. Huang, W. Luo, H. Huo, Z. Wang, X. Zheng, Z. Wen, Y. Huang, A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. Energy Storage Mater. 45, 934–940 (2022). https://doi.org/10.1016/j.ensm.2021.12.033

    Article  Google Scholar 

  14. Y. Dahiya, M. Hariram, M. Kumar, A. Jain, D. Sarkar, Modified transition metal chalcogenides for high performance supercapacitors: current trends and emerging opportunities. Coord. Chem. Rev. 451, 214265 (2022). https://doi.org/10.1016/j.ccr.2021.214265

    Article  CAS  Google Scholar 

  15. Y.H. Liu, C.Y. Wang, S.L. Yang, F.F. Cao, H. Ye, 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries. J. Energy Chem. 66, 429–439 (2022). https://doi.org/10.1016/j.jechem.2021.08.040

    Article  CAS  Google Scholar 

  16. Y. Xu, L. Wang, Q. Xu, L. Liu, X. Fang, C. Shi, B. Ye, L. Chen, W. Peng, Z. Liu, W. Chen, 3D hybrids based on WS2/N, S co-doped reduced graphene oxide: facile fabrication and superior performance in supercapacitors. Appl. Surf. Sci. 480, 1126–1135 (2019). https://doi.org/10.1016/j.apsusc.2019.02.217

    Article  CAS  Google Scholar 

  17. C. Ye, J. Shan, H. Li, C.-C. Kao, Q. Gu, S.-Z. Qiao, Reducing overpotential of solid-state sulfide conversion in potassium-sulfur batteries. Angew Chem. Int. Ed. 62, e202301681 (2023). https://doi.org/10.1002/anie.202301681

  18. R. Gao, Z. Wang, S. Liu, G. Shao, X. Gao, Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries. Int. J. Miner. Metall. Mater. 29, 990–1002 (2022). https://doi.org/10.1007/s12613-022-2451-2

    Article  CAS  Google Scholar 

  19. Z. Yang, C. Xu, M. Xia, X. Zhang, H. Yan, H. Yu, T. Sun, L. Zhang, F. Hu, J. Shu, Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Mater. Today 49, 184–200 (2021). https://doi.org/10.1016/j.mattod.2021.01.012

    Article  CAS  Google Scholar 

  20. G. Liu, Q. Sun, Q. Li, J. Zhang, J. Ming, Electrolyte issues in lithium-sulfur batteries: development, prospect, and challenges. Energy Fuels 35, 10405–10427 (2021). https://doi.org/10.1021/acs.energyfuels.1c00990

    Article  CAS  Google Scholar 

  21. M.K. Aslam, I.D. Seymour, N. Katyal, S. Li, T. Yang, S. Bao, G. Henkelman, M. Xu, Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries. Nat. Commun. 1–11. https://doi.org/10.1038/s41467-020-19078-0

  22. H. Yang, B. Zhang, Y.X. Wang, K. Konstantinov, H.K. Liu, S.X. Dou, Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M = Li, Na, K) sulfur batteries. Adv. Energy Mater. 10, 1–24 (2020). https://doi.org/10.1002/aenm.202001764

    Article  CAS  Google Scholar 

  23. S. Risse, S. Angioletti-Uberti, J. Dzubiella, M. Ballauff, Capacity fading in lithium/sulfur batteries: a linear four-state model. J. Power. Sources 267, 648–654 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.076

    Article  CAS  Google Scholar 

  24. S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94

    Article  CAS  Google Scholar 

  25. M.J. Klein, A. Dolocan, C. Zu, A. Manthiram, An effective lithium sulfide encapsulation strategy for stable lithium-sulfur batteries. Adv. Energy Mater. 7, 1–9 (2017). https://doi.org/10.1002/aenm.201701122

    Article  CAS  Google Scholar 

  26. H. Chu, H. Noh, Y.J. Kim, S. Yuk, J.H. Lee, J. Lee, H. Kwack, Y.K. Kim, D.K. Yang, H.T. Kim, Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10, 1–12 (2019). https://doi.org/10.1038/s41467-018-07975-4

    Article  CAS  Google Scholar 

  27. M. Zhu, S. Li, J. Liu, B. Li, Applied Surface Science Promoting polysulfide conversion by V2O3 hollow sphere for enhanced lithium-sulfur battery. Appl. Surf. Sci. 473, 1002–1008 (2019). https://doi.org/10.1016/j.apsusc.2018.12.189

    Article  CAS  Google Scholar 

  28. Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang, T. Feng, E. Paek, D. Mitlin, Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6, 1802272 (2019). https://doi.org/10.1002/advs.201802272

    Article  CAS  Google Scholar 

  29. P. Rajkumar, K. Diwakar, G. Radhika, K. Krishnaveni, R. Subadevi, M. Sivakumar, Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161, 37–48 (2019). https://doi.org/10.1016/j.vacuum.2018.12.016

    Article  CAS  Google Scholar 

  30. Y. Zhang, X. Ge, Q. Kang, Z. Kong, Y. Wang, L. Zhan, Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 393, 124570 (2020). https://doi.org/10.1016/j.cej.2020.124570

    Article  CAS  Google Scholar 

  31. Y. Li, B. Su, Manganese dioxide nanosheet functionalized sulfur@ PEDOT core–shell nanospheres for advanced lithium–sulfur batteries. J. Mater. Chem. A 4, 9403–9412 (2016). https://doi.org/10.1039/c6ta03211g

    Article  Google Scholar 

  32. Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C.J. Harris, K. Xi, R.V. Kumar, S. Ding, Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019). https://doi.org/10.1002/aenm.201900953

  33. X. Song, T. Gao, S. Wang, Y. Bao, G. Chen, L.-X. Ding, H. Wang, Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries. J. Power Sources 356, 172–180 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.093

  34. X. Lang, X. Wang, Y. Liu, K. Cai, L. Li, Q. Zhang, Cobalt-based metal organic framework (Co-MOFs)/graphene oxide composites as high-performance anode active materials for lithium-ion batteries. Int. J. Energy Res. 45, 4811–4820 (2021). https://doi.org/10.1002/er.6080

    Article  CAS  Google Scholar 

  35. Q. Sun, B. Xi, J.Y. Li, H. Mao, X. Ma, J. Liang, J. Feng, S. Xiong, Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 8, 1–10 (2018). https://doi.org/10.1002/aenm.201800595

    Article  CAS  Google Scholar 

  36. X. Jia, B. Liu, J. Liu, S. Zhang, Z. Sun, X. He, H. Li, G. Wang, H. Chang, Fabrication of NiO-carbon nanotube/sulfur composites for lithium-sulfur battery application. RSC Adv. 11, 10753–10759 (2021). https://doi.org/10.1039/d1ra00216c

    Article  CAS  Google Scholar 

  37. X.Y. Yu, X.W. (David) Lou, Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8, 1–37 (2018). https://doi.org/10.1002/aenm.201701592

  38. Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Transition metal chalcogenide anodes for sodium storage. Mater. Today 35, 131–167 (2020). https://doi.org/10.1016/j.mattod.2019.11.008

    Article  CAS  Google Scholar 

  39. C. Wang, L. Sun, K. Li, Z. Wu, F. Zhang, L. Wang, Unravel the catalytic effect of two-dimensional metal sulfides on polysulfide conversions for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 43560–43567 (2020). https://doi.org/10.1021/acsami.0c09567

    Article  CAS  Google Scholar 

  40. P. Wang, B. Xi, M. Huang, W. Chen, J. Feng, S. Xiong, Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021). https://doi.org/10.1002/aenm.202002893

  41. B. Qin, Q. Wang, W. Yao, Y. Cai, Y. Chen, P. Wang, Y. Zou, X. Zheng, J. Cao, J. Qi, W. Cai, Heterostructured Mn3O4-MnS multi-shelled hollow spheres for enhanced polysulfide regulation in lithium-sulfur batteries. Energy Environ. Mater. 1–9 (2022). https://doi.org/10.1002/eem2.12475

  42. G. Liu, Q. Zeng, X. Sui, S. Tian, X. Li, Q. Wu, X. Wang, K. Tao, E. Xie, Z. Zhang, Modulating the d-p orbital coupling of manganese chalcogenides for efficient polysulfides conversion in lithium–sulfur batteries. J. Power. Sources 552, 232244 (2022). https://doi.org/10.1016/j.jpowsour.2022.232244

    Article  CAS  Google Scholar 

  43. C. Yang, Y. Li, W. Peng, F. Zhang, X. Fan, In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chem. Eng. J. 427, 131792 (2022). https://doi.org/10.1016/j.cej.2021.131792

    Article  CAS  Google Scholar 

  44. H. Xiang, N. Deng, H. Zhao, X. Wang, L. Wei, M. Wang, B. Cheng, W. Kang, A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: progress and prospects. J. Energy Chem. 58, 523–556 (2021). https://doi.org/10.1016/j.jechem.2020.10.029

    Article  CAS  Google Scholar 

  45. B. He, W.C. Li, Z.Y. Chen, L. Shi, Y. Zhang, J.L. Xia, A.H. Lu, Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res. 14, 1273–1279 (2021). https://doi.org/10.1007/s12274-020-3102-4

    Article  CAS  Google Scholar 

  46. Y. Liu, X. Que, X. Wu, Q. Yuan, H. Wang, J. Wu, Y. Gui, W. Gan, ZIF-67 derived carbon wrapped discontinuous CoxP nanotube as anode material in high-performance Li-ion battery. Mater. Today Chem. 17, 100284 (2020). https://doi.org/10.1016/j.mtchem.2020.100284

    Article  CAS  Google Scholar 

  47. R. Reinhold, U. Stoeck, H.J. Grafe, D. Mikhailova, T. Jaumann, S. Oswald, S. Kaskel, L. Giebeler, Surface and electrochemical studies on silicon diphosphide as easy-to-handle anode material for lithium-based batteries—the phosphorus path. ACS Appl. Mater. Interfaces 10, 7096–7106 (2018). https://doi.org/10.1021/acsami.7b18697

    Article  CAS  Google Scholar 

  48. Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, The interfacial electronic engineering in binary sulfiphilic cobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium-sulfur batteries. Adv. Mater. 33, 2102338 (2021). https://doi.org/10.1002/adma.202102338

    Article  CAS  Google Scholar 

  49. J. Cheng, D. Zhao, L. Fan, X. Wu, M. Wang, N. Zhang, K. Sun, Ultra-high rate Li-S batteries based on a novel conductive Ni2P yolk-shell material as the host for the S cathode. J. Mater. Chem. A 5, 14519–14524 (2017). https://doi.org/10.1039/c7ta03236f

    Article  CAS  Google Scholar 

  50. Y. Chen, W. Zhang, D. Zhou, H. Tian, D. Su, C. Wang, D. Stockdale, F. Kang, B. Li, G. Wang, Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 13, 4731–4741 (2019). https://doi.org/10.1021/acsnano.9b01079

    Article  CAS  Google Scholar 

  51. Q. Pang, C.Y. Kwok, D. Kundu, X. Liang, L.F. Nazar, Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 3, 136–148 (2019). https://doi.org/10.1016/j.joule.2018.09.024

    Article  CAS  Google Scholar 

  52. Y. Gu, L.Q. Fan, J.L. Huang, C.L. Geng, J.M. Lin, M.L. Huang, Y.F. Huang, J.H. Wu, N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power. Sources 425, 60–68 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.123

    Article  CAS  Google Scholar 

  53. J. Shen, Y. Feng, P. Wang, G. Qiu, L. Zhang, L. Lu, H. Wang, R. Wang, V. Linkov, S. Ji, Conductive sulfur-rich copolymer composites as lithium-sulfur battery electrodes with fast kinetics and a high cycle stability. ACS Sustain. Chem. Eng. 8, 10389–10401 (2020). https://doi.org/10.1021/acssuschemeng.0c01791

    Article  CAS  Google Scholar 

  54. Y. Xie, H. Zhao, H. Cheng, C. Hu, W. Fang, J. Fang, J. Xu, Z. Chen, Facile large-scale synthesis of core–shell structured sulfur@polypyrrole composite and its application in lithium–sulfur batteries with high energy density. Appl. Energy 175, 522–528 (2016). https://doi.org/10.1016/j.apenergy.2016.03.085

    Article  CAS  Google Scholar 

  55. X. Wang, S. Zhang, H. Zhang, S. Gao, S. Han, Q. Xu, J. Xu, W. Lu, X. Wu, L. Chen, 3D porous spherical sulfur/carbon cathode materials with in situ vapor-phase polymerized polypyrrole coating layer for high-performance lithium-sulfur batteries. ACS Sustain. Chem. Eng. 7, 17491–17499 (2019). https://doi.org/10.1021/acssuschemeng.9b04805

    Article  CAS  Google Scholar 

  56. F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057–6063 (2011). https://doi.org/10.1021/jp1114724

    Article  CAS  Google Scholar 

  57. W. Wei, J. Li, Q. Wang, D. Liu, J. Niu, P. Liu, Hierarchically porous SnO2 nanoparticle-anchored polypyrrole nanotubes as a high-efficient sulfur/polysulfide trap for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 6362–6370 (2020). https://doi.org/10.1021/acsami.9b18426

    Article  CAS  Google Scholar 

  58. T. Wang, D. Luo, Y. Zhang, Z. Zhang, J. Wang, G. Cui, X. Wang, A. Yu, Z. Chen, Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium-sulfur batteries. ACS Nano 15, 19457–19467 (2021). https://doi.org/10.1021/acsnano.1c06213

    Article  CAS  Google Scholar 

  59. N. Li, Z. Xu, P. Wang, Z. Zhang, B. Hong, J. Li, Y. Lai, High-rate lithium-sulfur batteries enabled via vanadium nitride nanoparticle/3D porous graphene through regulating the polysulfides transformation. 398, 1–8 (2020). https://doi.org/10.1016/j.cej.2020.125432

  60. Y. Zhang, W. Tang, R. Zhan, H. Liu, H. Chen, J. Yang, M. Xu, An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 6, 2894–2899 (2019). https://doi.org/10.1039/c9qi00723g

    Article  CAS  Google Scholar 

  61. X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv. Mater. 29, 1–7 (2017). https://doi.org/10.1002/adma.201603040

    Article  CAS  Google Scholar 

  62. H. Liu, H. Guo, N. Wu, W. Yao, R. Xue, M. Wang, W. Yang, Rational design of nickel-cobalt selenides derived from multivariate bimetal metal-organic frameworks for high-performance asymmetric supercapacitor. J. Alloys Compd. 156535 (2020). https://doi.org/10.1016/j.jallcom.2020.156535

  63. J. Zhou, R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang, X. Li, Environmental Science for sulfur storage in fast, long-cycle Li–S batteries. Energy Environ. Sci. 7, 2715–2724 (2014). https://doi.org/10.1039/c4ee01382d

    Article  CAS  Google Scholar 

  64. S. Li, Z. Zhao, S. Wang, R. Liang, Z. Li, G. Chen, Graphene-wrapped chromium-MOF (MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li–S batteries. J. Mater. Chem. A 2, 13509–13512 (2014). https://doi.org/10.1039/c4ta01241k

    Article  CAS  Google Scholar 

  65. K. Xi, S. Cao, X. Peng, C. Ducati, R.V. Kumar, A.K. Cheetham, Metal–organic frameworks for lithium sulphur batteries. 49, 2192–94 (2013). https://doi.org/10.1039/c3cc38009b

  66. A. Wei, L. Wang, Z. Li, Metal-organic framework derived binary-metal oxide/MXene composite as sulfur host for high-performance lithium-sulfur batteries. J. Alloys Compd. 899, 163369 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahiya, Y., Agarwal, S., Kumar, M., Sarkar, D., Jain, A. (2024). Pseudocapacitive Materials for Metal-Sulfur Batteries. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_18

Download citation

Publish with us

Policies and ethics