Skip to main content

Advertisement

Log in

Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium–sulfur and sodium–sulfur batteries, we also comment on recent results on potassium–sulfur and magnesium–sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. It is worth to note that anion redox effects in high capacity positive electrode materials has recently become an active research field [16]. Anyway, most of the charge storage is due to the change in oxidation states of the transition metals.

  2. Similar reactions can be formulated for oxygen (metal–oxygen batteries). This type of cells ideally work with a gas diffusion electrode as cathode and ideally utilize atmospheric oxygen. They are therefore fundamentally different from classical rechargeable batteries that are closed systems. More information can be found in Refs. 17 and 18

References

  1. Dewulf J, Van der Vorst G, Denturck K, Van Langenhove H, Ghyoot W, Tytgat J et al (2010) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour Conserv Recycl 54(4):229–234

    Article  Google Scholar 

  2. Wadia C, Albertus P, Srinivasan V (2011) Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources 196(3):1593–1598

    Article  CAS  Google Scholar 

  3. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    Article  CAS  Google Scholar 

  4. Grey CP, Tarascon JM (2017) Sustainability and in situ monitoring in battery development. Nat Mater 16(1):45–56

    Article  Google Scholar 

  5. Thielmann A, Sauer A, Wietschel M (2015) Gesamt-Roadmap Energiespeicher für die Elektromobilitaet 2030. Fraunhofer-Institute ISI, Karlsruhe

    Google Scholar 

  6. Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5(4):329–332

    Article  Google Scholar 

  7. Nayak PK, Yang L, Brehm W, Adelhelm P (2017) From lithium-ion to sodium-ion batteries: a materials perspective. Angew Chem Int Ed Engl. doi:10.1002/anie.201703772

    Google Scholar 

  8. Hu Y (2016) Batteries: Getting solid. Nature Energy. 1(4):16042. http://www.nature.com/articles/nenergy201642

  9. Janek J, Zeier W (2016) A solid future for battery development. Nat Energy 1:16141. doi:10.1038/nenergy.2016.141

    Article  Google Scholar 

  10. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kann R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030. doi:10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  11. Aurbach D, McCloskey BD, Nazar LF, Bruce PG (2016) Advances in understanding mechanisms underpinning lithium–air batteries. Nature Energy 1(9):16128. doi:10.1038/nenergy.2016.128

    Article  CAS  Google Scholar 

  12. Soloveichik G (2015) Flow Batteries: Current Status and Trends. Chem Rev 115:11533–11558. doi:10.1021/cr500720t

    Article  CAS  Google Scholar 

  13. Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US (2017) Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew Chem Int Ed 56(3):686–711. doi:10.1002/anie.201604925

    Article  CAS  Google Scholar 

  14. Hueso KB, Armand M, Rojo T (2013) High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 6:734–749. doi:10.1039/C3EE24086J

    Article  CAS  Google Scholar 

  15. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research Development on Sodium-Ion Batteries. Chem Rev 114(23):11636–11682. doi:10.1021/cr500192f

    Article  CAS  Google Scholar 

  16. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT et al (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12(9):827–835

    Article  CAS  Google Scholar 

  17. McCloskey BD, Garcia JM, Luntz AC (2014) Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J Phys Chem Lett. 5(7):1230–1235

    Article  CAS  Google Scholar 

  18. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room-temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

    Article  CAS  Google Scholar 

  19. OXIS Energy Ltd (2017) Cited 2017 March 19; Available from https://oxisenergy.com/. Accessed 19 Mar 2017

  20. Raiss C, Peppler K, Janek J, Adelhelm P (2014) Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79:245–255

    Article  CAS  Google Scholar 

  21. Levin BDA, Zachman MJ, Werner JG, Sahore R, Nguyen KX, Han Y et al (2017) Characterization of sulfur and nanostructured sulfur battery cathodes in electron microscopy without sublimation artifacts. Microsc Microanal 23:15–162

    Google Scholar 

  22. Steudel R (2003) Inorganic Polysulfides Sn 2−and Radical Anions Sn ·−. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds II. Topics in Current Chemistry, vol 231. Springer, Berlin, Heidelberg. doi:10.1007/b11909

  23. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A1969–A1976

    Article  CAS  Google Scholar 

  24. Rehman S, Khan K, Zhao Y, Hou Y (2017) Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. J Mater Chem A 5(7):3014–3038

    Article  CAS  Google Scholar 

  25. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506

    Article  CAS  Google Scholar 

  26. Holleman AF, Wiberg E, N. W. Lehrbuch der Anorganischen Chemie. 2007;102

  27. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Article  CAS  Google Scholar 

  28. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room-temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

    Article  CAS  Google Scholar 

  29. Gao J, Lowe MA, Kiya Y, Abruña HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137

    Article  CAS  Google Scholar 

  30. Yim T, Park M-S, Yu J-S, Kim KJ, Im KY, Kim J-H et al (2013) Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim Acta 107:454–460

    Article  CAS  Google Scholar 

  31. Fan FY, Pan MS, Lau KC, Assary RS, Woodford WH, Curtiss LA et al (2016) Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium–sulfur batteries. J Electrochem Soc 163(14):A3111–A3116

    Article  CAS  Google Scholar 

  32. Zhang SS (2012) Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J Electrochem Soc 159(8):A1226–A1229

    Article  CAS  Google Scholar 

  33. Wenzel S, Metelmann H, Raiss C, Durr AK, Janek J, Adelhelm P (2013) Thermodynamics and cell chemistry of room-temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J Power Sources 243:758–765

    Article  CAS  Google Scholar 

  34. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641

    Article  CAS  Google Scholar 

  35. Hagen M, Dörfler S, Fanz P, Berger T, Speck R, Tübke J et al (2013) Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268

    Article  CAS  Google Scholar 

  36. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    Article  CAS  Google Scholar 

  37. Janek J, Adelhelm P (2013) Zukunftstechnologien. In: Korthauer R (ed) Handbuch lithium-ionen-batterien. Springer Berlin Heidelberg, Berlin, pp 199–217

    Chapter  Google Scholar 

  38. Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56(17):6055–6059

    Article  CAS  Google Scholar 

  39. Nagao M, Imade Y, Narisawa H, Kobayashi T, Watanabe R, Yokoi T et al (2013) All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 222:237–242

    Article  CAS  Google Scholar 

  40. Trevey JE, Gilsdorf JR, Stoldt CR, Lee SH, Liu P (2012) Electrochemical investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode. J Electrochem Soc 159(7):A1019–A1022

    Article  CAS  Google Scholar 

  41. Yu X, Xie J, Yang J, Wang K (2004) All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes. J Power Sources 132(1–2):181–186

    Article  CAS  Google Scholar 

  42. Yamin HP (1983) E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources 9(3):281–287

    Article  CAS  Google Scholar 

  43. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20(44):9821–9826

    Article  CAS  Google Scholar 

  44. Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562

    Article  CAS  Google Scholar 

  45. Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143

    Article  CAS  Google Scholar 

  46. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200

    Article  CAS  Google Scholar 

  47. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787

    Article  CAS  Google Scholar 

  48. Lin Z, Liang CD (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3(3):936–958

    Article  CAS  Google Scholar 

  49. Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF (2015) Review on Li–sulfur battery systems: an integral perspective. Adv Energy Mater 5(16):1500212

    Article  Google Scholar 

  50. Borchardt L, Oschatz M, Kaskel S (2016) Carbon Materials for lithium sulfur batteries-ten critical questions. Chem Eur J 22(22):7324–7351

    Article  CAS  Google Scholar 

  51. Seh ZW, Sun YM, Zhang QF, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45(20):5605–5634

    Article  CAS  Google Scholar 

  52. Okamoto H (1995) The Li–S (lithium–sulfur) system. J Phase Equilib 16(1):94–97

    Article  CAS  Google Scholar 

  53. Sangster J, Pelton AD (1997) The Na–S (sodium–sulfur) system. J Phase Equilib 18:89–96

    Article  CAS  Google Scholar 

  54. Sangster J, Pelton AD (1997) The K–S (Potassium–Sulfur) system. J Phase Equilib 18:82–88

    Article  CAS  Google Scholar 

  55. Predel B (1997) Mg–S (magnesium–sulfur). In: Madelung O (ed) Li–Mg—Nd–Zr. Springer Berlin Heidelberg, Berlin, p 1

    Google Scholar 

  56. Busche MR, Drossel T, Leichtweiss T, Weber DA, Falk M, Schneider M et al (2016) Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat Chem 8(5):426–434

    Article  CAS  Google Scholar 

  57. Huang J-Q, Zhang Q, Peng H-J, Liu X-Y, Qian W-Z, Wei F (2014) Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ Sci 7(1):347–353

    Article  CAS  Google Scholar 

  58. Yu X, Manthiram A (2016) Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional Nafion separator and a Na2S/activated carbon nanofiber cathode. Chem Mater 28(3):896–905

    Article  CAS  Google Scholar 

  59. Bauer I, Thieme S, Brückner J, Althues H, Kaskel S (2014) Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. J Power Sources 251:417–422

    Article  CAS  Google Scholar 

  60. Yu X, Joseph J, Manthiram A (2015) Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. J Mater Chem A. 3(30):15683–15691

    Article  CAS  Google Scholar 

  61. Ceylan Cengiz E, Erdol Z, Sakar B, Aslan A, Ata A, Ozturk O et al (2017) Investigation of the effect of using Al2O3–Nafion barrier on room-temperature Na–S batteries. J Phys Chem C 121(28):15120–15126

    Article  CAS  Google Scholar 

  62. Kim I, Park J-Y, Kim CH, Park J-W, Ahn J-P, Ahn J-H et al (2016) A room-temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J Power Sources 301:332–337

    Article  CAS  Google Scholar 

  63. Yu X, Manthiram A (2014) Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries. J Phys Chem Lett. 5(11):1943–1947

    Article  CAS  Google Scholar 

  64. Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6(5):1552

    Article  CAS  Google Scholar 

  65. Abraham KM, Rauh RD, Brummer SB (1978) A low temperature NaS battery incorporating a soluble S cathode. Electrochim Acta 23:501–507

    Article  CAS  Google Scholar 

  66. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527

    Article  CAS  Google Scholar 

  67. Yu X, Manthiram A (2014) Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J Phys Chem C 118(40):22952–22959

    Article  CAS  Google Scholar 

  68. Li N, Weng Z, Wang Y, Li F, Cheng H-M, Zhou H (2014) An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy Environ Sci 7(10):3307–3312

    Article  CAS  Google Scholar 

  69. Licht S. Sulfur/aluminum electrochemical batteries. Google Patents 1996

  70. Licht S, Hwang J, Light TS, Dillon R (1997) The low current domain of the aluminum/sulfur battery. J Electrochem Soc 144(3):948–955

    Article  CAS  Google Scholar 

  71. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  CAS  Google Scholar 

  72. Hartmann P, Leichtweiss T, Busche MR, Schneider M, Reich M, Sann J et al (2013) Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 117(41):21064–21074

    Article  CAS  Google Scholar 

  73. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2016) Interface stability in solid-state batteries. Chem Mater 28(1):266–273

    Article  CAS  Google Scholar 

  74. Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4(9):3253–3266

    Article  CAS  Google Scholar 

  75. Schwoebel A, Hausbrand R, Jaegermann W (2015) Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ion 273:51–54

    Article  CAS  Google Scholar 

  76. Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J et al (2016) Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16(11):7030–7036

    Article  CAS  Google Scholar 

  77. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF et al (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

    Article  CAS  Google Scholar 

  78. Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

    Article  CAS  Google Scholar 

  79. Park C-W, Ryu H-S, Kim K-W, Ahn J-H, Lee J-Y, Ahn H-J (2007) Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte. J Power Sources 165(1):450–454

    Article  CAS  Google Scholar 

  80. Kummer JT, Weber N (1976) A sodium–sulfur secondary battery. SAE Technical Paper 670179

  81. Kummer JT, Weber N (1968) Battery having a molten alkali metal anode and a molten sulfur cathode patent US3413150. 1968 Nov. 26

  82. Fally P (1973) Some aspects of sodium–sulfur cell operation. J Electrochem Soc. 120(10):1292–1295

    Article  CAS  Google Scholar 

  83. Whittingham MS, Huggins RA (1971) Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys 54(1):414–416

    Article  CAS  Google Scholar 

  84. NAS Energy Storage System (2017) Cited 2017 February 20. Available from:https://ngk.co.jp. Accessed 20 Feb 2017

  85. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148:405–416

    Article  CAS  Google Scholar 

  86. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011–9034

    Article  CAS  Google Scholar 

  87. Younesi R, Veith GM, Johansson P, Edström K, Vegge T (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8(7):1905–1922

    Article  CAS  Google Scholar 

  88. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    Article  CAS  Google Scholar 

  89. Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P et al (2014) Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Func Mater 24(9):1284–1289

    Article  Google Scholar 

  90. Hassoun J, Kim J, Lee D-J, Jung H-G, Lee S-M, Sun Y-K et al (2012) A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon–sulfur battery. J Power Sources 202:308–313

    Article  CAS  Google Scholar 

  91. Yan Y, Yin Y-X, Xin S, Su J, Guo Y-G, Wan L-J (2013) High-safety lithium–sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochim Acta 91:58–61

    Article  CAS  Google Scholar 

  92. Agostini M, Hassoun J, Liu J, Jeong M, Nara H, Momma T et al (2014) A lithium-ion sulfur battery based on a carbon-coated lithium–sulfide cathode and an electrodeposited silicon-based anode. ACS Appl Mater Interfaces 6(14):10924–10928

    Article  CAS  Google Scholar 

  93. Agostini M, Hassoun J (2015) A lithium-ion sulfur battery using a polymer, polysulfide-added membrane. Sci Rep. 5:7591

    Article  CAS  Google Scholar 

  94. Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z et al (2014) Improved cycle stability and high security of Li–B alloy anode for lithium–sulfur battery. J Mater Chem A 2(30):11660

    Article  CAS  Google Scholar 

  95. Available from: http://www.cytech.com/products-ips. 2017. Cited 2017 March 19

  96. Available from: http://www.st.com/content/st_com/en/products/power-management/battery-management-ics/enfilm-thin-film-batteries/efl700a39.html. 2017. Cited 2017 March 2017

  97. Yu J, Hu YS, Pan F, Zhang Z, Wang Q, Li H et al (2017) A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat Commun 8:14629

    Article  Google Scholar 

  98. Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M (2015) Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater 5(3):1401155

    Article  Google Scholar 

  99. Cheek GT, O’Grady WE, El Abedin SZ, Moustafa EM, Endres F (2008) Studies on the electrodeposition of magnesium in ionic liquids. J Electrochem Soc 155(1):D91

    Article  CAS  Google Scholar 

  100. Zhao Q, Hu Y, Zhang K, Chen J (2014) Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. Inorg Chem 53(17):9000–9005

    Article  CAS  Google Scholar 

  101. Lu X, Bowden ME, Sprenkle VL, Liu J (2015) A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage. Adv Mater 27(39):5915–5922

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the State of Thuringia (Germany) within the ProExzellenz program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Adelhelm.

Additional information

This article is part of the Topical Collection “Electrochemical Energy Storage”; edited by Rüdiger A. Eichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medenbach, L., Adelhelm, P. Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications. Top Curr Chem (Z) 375, 81 (2017). https://doi.org/10.1007/s41061-017-0168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0168-x

Keywords

Navigation