Skip to main content

Climate Change and Himalayan Glaciers: A Socio-Environmental Concern in Anthropocene Epoch

  • Chapter
  • First Online:
Climate Crisis: Adaptive Approaches and Sustainability

Abstract

Glaciers are playing a prime role in the regulation of the global climate system and cover around 10% of the total land area of the planet. For almost a century, glaciers have been explored as sensitive climatic indicators. Some of the world’s largest and most gorgeous glaciers can be found in the Himalayan range, spanning across eight countries in Asia. The adverse effects due to climate change may cause serious socio-economic and environmental concerns for the community of Himalayas. Hence, this chapter discusses the climate change impacts on Himalayan glaciers in socio-environmental aspect with an extreme significance in regard to the Anthropocene epoch. It delivers various methods for assessment, climate change impacts, influence of livelihoods, and mitigation and adaptation strategies. The in-depth synthesis of previous studies will aid in getting a better understanding of existing knowledge and gaps areas in Himalayan glaciology. It will also help decision-makers to devise critical measures for mitigating the consequences of probable threats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad O (2021) Explainer: The disappearing glaciers of the Himalayas. The third pole. https://www.thethirdpole.net/en/climate/glaciers-himalayas-melting/

  • Allen TR (1998) Topographic context of glaciers and perennial snowfields, glacier National Park. Montana Geomorphology 21(3–4):207–216

    Article  ADS  Google Scholar 

  • Archer DR, Forsythe N, Fowler HJ, Shah SM (2010) Sustainability of water resources management in the Indus Basin under changing climatic and socio-economic conditions. Hydrol Earth Syst Sci 14(8):1669–1680

    Article  ADS  Google Scholar 

  • Bajracharya SR, Mool PK, Shrestha BR (2008) Global climate change and melting of Himalayan glaciers. Melting glaciers and rising sea levels: Impacts Implications, pp 28–46

    Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bates B, Kundzewicz Z, Wu S (2008) Climate change and water. Intergovernmental Panel on Climate Change Secretariat

    Google Scholar 

  • Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H et al (2015) Revision of the EPICA dome C CO2 record from 800 to 600 kyr before present. Geophys Res Lett 42(2):542–549

    Article  ADS  Google Scholar 

  • Berger AL, Gulick SP, Spotila JA, Upton P, Jaeger JM, Chapman JB et al (2008) Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nat Geosci 1(11):793–799

    Article  ADS  CAS  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr Sci 102(3):489–494

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the Northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548

    Article  Google Scholar 

  • Binaghi E, Madella A, Madella P, Rampini A (1993) Integration of remote sensing images in a GIS for the study of alpine glaciers. In: Winkler P (ed) Remote sensing for monitoring the changing environment of Europe. Proceedings 12th EARSEL symposium, Hungary. Balkema, Rotterdam, pp 173–178

    Google Scholar 

  • Bisht H, Kotlia BS, Kumar K, Arya PC, Sah SK, Kukreti M, Chand P (2020) Estimation of suspended sediment concentration and meltwater discharge draining from the Chaturangi glacier. Garhwal Himalaya Arabian Journal of Geosciences 13(6):1–12

    Google Scholar 

  • Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5:349–358

    Article  ADS  Google Scholar 

  • Byg A, Salick J (2009) Local perspectives on a global phenomenon—climate change in eastern Tibetan villages. Glob Environ Chang 19:156–166

    Article  Google Scholar 

  • Carey M, Huggel C, Bury J, Portocarrero C, Haeberli W (2012) An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, cordillera Blanca. Peru Climatic Change 112(3):733–767

    Article  ADS  Google Scholar 

  • Chalise SR, Shrestha ML, Bajracharya OR, Shrestha AB (2006) Climate change impacts on glacial lakes and glacierized basins in Nepal and implications for water resources. IAHS Publ 308:460

    Google Scholar 

  • Chaujar RK (2009) Climate change and its impact on the Himalayan glaciers–a case study on the Chorabari glacier, Garhwal Himalaya. India Curr Sci:703–708

    Google Scholar 

  • Chhetri MP (1999) Disaster management in Nepal: problems and solutions. In: Ingleton J (ed) Natural Disaster Management. U.N. Secretariat for the IDNDR, Tudor Rose Holdings Ltd, Leicester, pp 223–224

    Google Scholar 

  • Cogley G (2011) Present and future states of Himalaya and Karakoram glaciers. Ann Glaciol 52(59):69–73

    Article  ADS  Google Scholar 

  • Crutzen PJ (2002) The “anthropocene”. Journal de Physique IV (Proceedings). 12(10):1–5

    Article  Google Scholar 

  • Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Safari M, Li C, HuuNinh N (2007) Asia. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, Van Der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 469–506

    Google Scholar 

  • Cuffey K, Paterson WSB (2010) The physics of glaciers, 5th edn. Massachusetts Academic Press, Burlington, VT

    Google Scholar 

  • Dasgupta A, Shyamoli S (2021) Himalayan glacial retreat—an interpretation of the glacial mass balance model. Int J Adv Eng Manag (IJAEM):1054–1063

    Google Scholar 

  • Dimri AP, Dash SK (2011) Wintertime climatic trends in the Western Himalayas. Clim Chang. https://doi.org/10.1007/s10584-011-0201-y

  • Dobhal DP, Gergan JT, Thayyen RJ (2004) Recession and morphogeometrical changes of Dokriani glacier (1962-1995) Garhwal Himalaya. India Curr Sci Bangalore 86(5):692–696

    Google Scholar 

  • Dobhal DP, Gergan JT, Thayyen RJ (2008) Mass balance studies of the Dokriani glacier from to, Garhwal Himalaya, India. Bull Glaciol Res 25:9–17

    Google Scholar 

  • Embleton C, King CAM (1975) Glacial and periglacial geomorphology

    Google Scholar 

  • Everest R (1832) Some observations on the quantity of earthy matter brought down by the Ganga River. Royal Asiatic Society, Bangal 1:238–242

    Google Scholar 

  • Fujita K, Sakai A, Takenaka S, Nuimura T, Surazakov AB, Sawagaki T, Yamanokuchi T (2013) Potential flood volume of Himalayan glacial lakes. Nat Hazards Earth Syst Sci 13(7):1827–1839

    Article  ADS  Google Scholar 

  • Gao J, Liu Y (2001) Applications of remote sensing, GIS and GPS in glaciology: a review. Prog Phys Geogr 25(4):520–540

    Article  Google Scholar 

  • Gardner JS, Jones NK (1984) Sediment transport and yield at the Rakiot glacier, Nanga Parbat, Punjab Himalaya. In: Miller KJ (ed) The international Karakoram project 1. Cambridge University Press, Cambridge, pp 184–197

    Google Scholar 

  • Garelik IS, Kotlyakov VM, Osipova GB, Tsvetkov DG (1996) Computer analysis of the dynamics of pulsating glaciers. Mapp Sci Remote Sens 33(3):207–216

    Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28(11):1453–1469

    Article  Google Scholar 

  • Gupta S, Kumar S (2017) Simulating climate change impact on soil erosion using RUSLE model− a case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science 126(3):1–20

    Article  Google Scholar 

  • Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212

    Article  ADS  Google Scholar 

  • Hagg WJ, Braun LN, Uvarov VN, Makarevich KG (2004) A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia. J Glaciol 50(171):505–510

    Article  Google Scholar 

  • Hallet B, Hunter L, Bogen J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob Planet Chang 12(1–4):213–235

    Article  ADS  Google Scholar 

  • Hanisch J, Delisle G, Pokhrel AP, Dixit AM, Reynolds JM, Grabs WE (1998) The Thulagi glacier lake, ManasluHimal, Nepal * Hazard assessment of a potential outburst. In: Proceedings eighth international congress, international association for engineering geology and the environment. Vancouver, Canada, pp 2209–2215

    Google Scholar 

  • Hanisch J, Pokhrel AP, Dixit AM, Grabs WE, Reynolds JM (1999) GLOF mitigation strategies * lessons learnt from studying the Thulagi glacier lake. Nepal [abstract] Journal of Nepal Geological Society 20:163

    Google Scholar 

  • Harbor J, Warburton J (1993) Relative rates of glacial and nonglacial erosion in alpine environments. Arct Alp Res 25(1):1–7

    Article  Google Scholar 

  • Haritashya UK, Singh P, Kumar N, Gupta RP (2006) Suspended sediment from the Gangotri glacier: quantification, variability and associations with discharge and air temperature. J Hydrol 321:116–130. https://doi.org/10.1016/j.jhydrol.2005.07.037

    Article  Google Scholar 

  • Hegdahl TJ, Tallaksen LM, Engeland K, Burkhart JF, Xu C-Y (2016) Discharge sensitivity to snowmelt parameterization: a case study for upper Beas basin in Himachal Pradesh, India. Hydrol Res. https://doi.org/10.2166/nh.2016.047

  • Hewitt K (2005) The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt Res Dev 25:332–340

    Article  Google Scholar 

  • Hoinkes H (1970) Methoden und Mo¨glichkeiten von Massenhaushaltsstudien auf Gletschern: Ergebnisse der MessreiheHintereisferner (O¨ tztaler Alpen) 1953–1968 [Ways and means of studies of glacier mass balance]. Z Gletscherk Glazialgeol 6(1–2):37–90

    Google Scholar 

  • Hudaa MB, Lone MA, Kumar R, Khoshoueid SR (2021) A review on the implications of changing climate on the water productivity of Himalayan glaciers

    Google Scholar 

  • ICIMOD (2011) Glacial Lakes and glacial Lake outburst floods in Nepal

    Book  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability: summary for policymakers. In: Working group II contribution to the intergovernmental panel on climate change fourth assessment report. IPCC, Geneva

    Google Scholar 

  • IPCC (2018) Global warming of 1.5oC. An IPCC special report on the impacts of global warming of 1.5oC above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

    Google Scholar 

  • Jonell TN, Carter A, Böning P, Pahnke K, Clift PD (2017) Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River. NW India Geol Soc Am Bull 129:820–836

    Article  CAS  Google Scholar 

  • Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9(2):557–564

    Article  ADS  Google Scholar 

  • Kadel I, Yamazaki T, Iwasaki T, Abdillah MR (2018) Projection of future monsoon precipitation over the Central Himalayas by CMIP5 models under warming scenarios. Clim Res 75(1):1–21

    Article  Google Scholar 

  • Kapnick SB, Delworth TL, Ashfaq M, Malyshev S, Milly PC (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat Geosci 7(11):834–840

    Article  ADS  CAS  Google Scholar 

  • Kargel JS, Cogley JG, Leonard GJ, Haritashya U, Byers A (2011) Himalayan glaciers: the big picture is a montage. Proc Natl Acad Sci 108:14709–14710

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehrwald NM, Thompson L, Tandong Y, Mosley-Thompson E, Schotterer U, Alfimov V, Beer J, Eikenberg J, Davis M (2008) Mass loss on Himalayan glacier endangers water resources. Geophys Res Lett 35:L22503. https://doi.org/10.1029/2008GL035556

    Article  ADS  Google Scholar 

  • Khattak MS, Babel MS, Sharif M (2011) Hydro-meteorological trends in the upper Indus River Basin in Pakistan. Clim Res 46:103–119

    Article  Google Scholar 

  • Koppes MN (2022) 4.09 - Rates and Processes of Glacial Erosion. In: Jack J, Shroder F (eds) Treatise on Geomorphology, 2nd edn. Academic Press, pp 169–181. https://doi.org/10.1016/B978-0-12-818234-5.00032-8

    Chapter  Google Scholar 

  • Kulkarni AV, Bahuguna IM (2002) Glacial retreat in the Baspa basin, Himalaya, monitored with satellite stereo data. J Glaciol 48(160):171–172

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr Sci:69–74

    Google Scholar 

  • Kulkarni AV, Dhar S, Rathore BP, Raj KBG, Kalia R (2006) Recession of SamundraTapu glacier, Chadra river basin, Himachal Pradesh. J Indian Soc Remote Sensing 34(1):39–46

    Article  Google Scholar 

  • Kulkarni AV, Karyakarte Y (2014) Observed changes in Himalayan glaciers. Curr Sci:237–244

    Google Scholar 

  • Kumar B, Murugesh Prabhu TS (2012) Impacts of climate change: glacial lake outburst floods (GLOFs). In: Climate change in Sikkim patterns, impacts and initiatives. Information and Public Relations Department, Government of Sikkim, Gangtok

    Google Scholar 

  • Kumar KR, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci:334–345

    Google Scholar 

  • Li Z, Sun W, Zeng Q (1998) Measurements of glacier variation in the Tibetan plateau using Landsat data. Remote Sens Environ 63(3):258–264

    Article  ADS  Google Scholar 

  • Li H, Xu C-Y, Beldring S, Tallaksen LM, Jain SK (2016) Water resources under climate change in Himalayan basins. Water Resour Manag 30:843–859

    Article  Google Scholar 

  • Luitel KK, Shrestha DG, Sharma NP, Sharma RK (2012) Impact of climate change on east-Rathong glacier in Rangit Basin, West Sikkim. In: Climate change in Sikkim patterns, impacts and initiatives. Information and Public Relations Department, Government of Sikkim, Gangtok

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–382

    Article  ADS  PubMed  Google Scholar 

  • Ma X, Xu J, Luo Y, Prasad Aggarwal S, Li J (2009) Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-West China. Hydrological Processes: An International Journal 23(8):1179–1191

    Article  ADS  Google Scholar 

  • Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201. https://doi.org/10.1126/science.1228026

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ménégoz M, Gallée H, Jacobi HW (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17:3921–3936. https://doi.org/10.5194/hess-17-3921-2013

    Article  ADS  Google Scholar 

  • Mertes JR, Thompson SS, Booth AD, Gulley JD, Benn DI (2017) A conceptual model of supra-glacial lake formation on debris-covered glaciers based on GPR facies analysis. Earth Surf Process Landf 42(6):903–914

    Article  ADS  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21

    Article  ADS  Google Scholar 

  • Myint AK, Hofer T (1998) Forestry and key Asian watersheds: a paper prepared as background document for the Asia-Pacific forestry outlook study of the food and agriculture organization with financial support from the Canadian international development agency (CIDA). ICIMOD

    Google Scholar 

  • Nainwal HC, Negi BDS, Chaudhary M, Sajwan KS, Gaurav A (2008) Temporal changes in rate of recession: evidences from Satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station survey. Curr Sci 94(5):653–660

    Google Scholar 

  • Naithani AK, Nainwal HC, Sati KK, Prasad C (2001) Geomorphological evidences of retreat of the Gangotri glacier and its characteristics. Curr Sci 80(1):87–94

    Google Scholar 

  • National Research Council (2012) Himalayan glaciers: climate change, water resources, and water security. National Academies Press

    Google Scholar 

  • National Snow and Ice Data Center (2022) | What are glacial lakes? https://nsidc.org/cryosphere/icelights/2013/05/ebb-and-flow-glacial-lakes#:~:text=How%20glacial%20lakes%20form,fills%20the%20hole%20left%20behind

  • Nijssen B, O’Donnell GM, Hamlet AF, Lettenmaier DP (2001) Hydrologic sensitivity of global rivers to climate change. Clim Chang 50(1):143–175

    Google Scholar 

  • Padhy MK, Saini RP (2008) A review on silt erosion in hydro turbines. Renew Sust Energ Rev 12:1974–1987

    Article  Google Scholar 

  • Pandey AC, Ghosh S, Nathawat MS (2011) Evaluating patterns of temporal glacier changes in greater Himalayan range, Jammu & Kashmir, India. Geocarto Int 26:321–338

    Article  ADS  Google Scholar 

  • Pant SR, Reynolds JM (1999) Subsurface electrical imaging techniques for the investigation of Thulagi glacier Lake dam [abstract]. J Nepal Geolog Soc 20:80

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Raina VK (2009) Himalayan glaciers: a state-of-art review of glacial studies, glacial retreat and climate change. MoEF Discussion Paper 56

    Google Scholar 

  • Raj AD, Kumar S, Sooryamol KR (2022) Modelling climate change impact on soil loss and erosion vulnerability in a watershed of Shiwalik Himalayas. Catena 214:106279

    Article  Google Scholar 

  • Rajbhandari R, Shrestha AB, Nepal S, Wahid S (2016) Projection of future climate over the Koshi River basin based on CMIP5 GCMs. Atmos Clim Sci 6:190–204

    Google Scholar 

  • Rautela P, Karki B (2015) Impact of climate change on life and livelihood of indigenous people of higher Himalaya in Uttarakhand, India. Am J Environ Protect 3(4):112–124

    Google Scholar 

  • Richard D, Gay M (2003) Guidelines for scientific studies about glacial hazards. Survey and prevention of extreme glaciological hazards in European mountainous regions. Glaciorisk Project, Deliverables. Website: http://glaciorisk.grenoble.cemagref.fr

    Google Scholar 

  • Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quat Int 65:31–47

    Article  Google Scholar 

  • Riggs, G. A., Hall, D. K., & Román, M. O. (2016). NASA S-NPP VIIRS snow products collection 1 user guide

    Google Scholar 

  • Rounce DR, Hock R, Shean DE (2020) Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM). Front Earth Sci 7:331

    Article  ADS  Google Scholar 

  • Sabin TP, Krishnan R, Vellore R, Priya P, Borgaonkar HP, Singh BB, Sagar A (2020) Climate change over the Himalayas. In: Assessment of climate change over the Indian region. Springer, Singapore, pp 207–222

    Chapter  Google Scholar 

  • Sakai A, Chikita K, Yamada T (2000) Expansion of a moraine-dammed glacial lake, TshoRolpa, in RolwalingHimal. Nepal Himalaya Limnology Oceanography 45(6):1401–1408

    Article  ADS  Google Scholar 

  • Salerno F, Thakuri S, D’Agata C, Smiraglia C, Manfredi EC, Viviano G, Tartari G (2012) Glacial lake distribution in the Mount Everest region: uncertainty of measurement and conditions of formation. Glob Planet Chang 92:30–39

    Article  ADS  Google Scholar 

  • Salick J, Ghimire SK, Fang Z, Dema S, Konchar KM (2014) Himalayan alpine vegetation, climate change and mitigation. J Ethnobiol 34(3):276–293

    Article  Google Scholar 

  • Samal PK, Palni LMS, Agrawal DK (2003) Ecology, ecological poverty and sustainable development in central Himalayan region of India. Internat J Sustain Develop World Ecol 10(2):157–168

    Article  Google Scholar 

  • Sangewar CV, Kulkarni AV (2011) Observational studies of the recent past. In: Report of the Study Group on Himalayan glaciers prepared for the Office of the Principal Scientific Adviser to the Government of India. PSA

    Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Mountain Ecosyst:275–354

    Google Scholar 

  • Schild A (2008) ICIMOD’s position on climate change and mountain systems. Mt Res Dev 28:328–331

    Article  Google Scholar 

  • Sevruk B (1982) Methods for correction for systematic error in point precipitation measurements for operational use. WMO Rep. 589. Geneva, World Meteorological Organization. (Operational hydrology rep. No. 21)

    Google Scholar 

  • Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Chang 11:65–77

    Article  Google Scholar 

  • Singh JS (2006) Sustainable development of the Indian Himalayan region: linking ecological and economic concerns. Curr Sci:784–788

    Google Scholar 

  • Singh P, Ramasatri KS, Kumar N, Bhatnagar NK (2003) Suspended sediment transport from the Dokriani glacier in the Garhwal Himalayas. Hydrol Res 34(3):221–244

    Article  Google Scholar 

  • Sohn HG, Jezek KC, van der Veen CJ (1998) Jakobshavn glacier, West Greenland: 30 years of spaceborne observations. Geophys Res Lett 25(14):2699–2702

    Article  ADS  CAS  Google Scholar 

  • Sooryamol KR, Kumar S, Regina M, David Raj A (2022) Modelling climate change impact on soil erosion in a watershed of north-western lesser Himalayan region. J Sedimentary Environ:1–22

    Google Scholar 

  • Srivastava D (2004) Recession of Gangotri glacier. In: Srivastava D, Gupta KR, Mukerji S (eds) Proceedings of Workshop on Gangotri Glacier, Lucknow. Geological Survey of India, Special Publication Number 80, pp 21–32

    Google Scholar 

  • Subramanian V (1993) Sediment load of Indian rivers. Curr Sci:64-928-930

    Google Scholar 

  • Talukder B, Matthew R, Bunch MJ, Hipel KW, Orbinski J (2021) Melting of Himalayan glaciers and planetary health. Curr Opin Environ Sustain 50:98–108

    Article  Google Scholar 

  • Thakur PK, Pandey P, Chauhan P (2023) Assessment of dynamics of frontal part of Gangotri glacier, India, from 2017 to 2021 using remote sensing data. J Indian Soc Remote Sens:1–8

    Google Scholar 

  • UNDP (2010) Project facts – HIMALAYAS - glacial Lake outburst flood (GLOF) risk reduction in the Himalayas. Regional Glacial Lake Outburst Flood (GLOF) Risk Reduction Project in the Himalayas

    Google Scholar 

  • United Nations Framework Convention On Climate Change (1992) pp. 33. Available at https://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/conveng.pdf. Accessed 13 March 2001

  • Wang XIN, Chai K, Liu S, Wei J, Jiang Z, Liu Q (2017) Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan plateau. J Glaciol 63(239):535–542

    Article  Google Scholar 

  • Wu J, Xu Y, Gao XJ (2017) Projected changes in mean and extreme climates over Hindu Kush Himalayan region by 21 CMIP5 models. Adv Clim Chang Res 8:176–184

    Article  Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Allen SK, Bao A et al (2021) Increasing risk of glacial lake outburst floods from future third pole deglaciation. Nat Clim Chang 11:411–417. https://doi.org/10.1038/s41558-021-01028-3

    Article  ADS  Google Scholar 

  • Zhou H, Zhao X, Tang Y, Gu S, Zhou L (2005) Alpine grassland degradation and its control in the source region of the Yangtze and yellow Rivers, China. Grassland Sci 51(3):191–203

    Article  Google Scholar 

  • Zwally HJ (1987) Technology in the advancement of glaciology. J Glaciol Cambridge University Press 33(S1):66–77. https://doi.org/10.3189/S0022143000215840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aju David Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

David Raj, A., David Raj, A., Sooryamol, K.R. (2023). Climate Change and Himalayan Glaciers: A Socio-Environmental Concern in Anthropocene Epoch. In: Chatterjee, U., Shaw, R., Kumar, S., Raj, A.D., Das, S. (eds) Climate Crisis: Adaptive Approaches and Sustainability. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-031-44397-8_4

Download citation

Publish with us

Policies and ethics