Skip to main content

AFM Imaging Control and System Integration

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

The development of an atomic force microscopy (AFM) system requires a comprehensive understanding of mechatronics and instrumentation. This chapter focuses on integrating the AFM system with additional modules and control strategies for AFM imaging, building upon the subsystems introduced in previous chapters. The control algorithms necessary for AFM imaging are discussed, covering both low-level control for scanner axis motion and high-level control for overall AFM imaging. Furthermore, the chapter discusses additional modules for AFM system integration, including the optical microscope, the imaging environment control chamber, and the image post-processing software. The chapter also provides a brief overview of specialized imaging modes beyond topography imaging. Finally, an example of a modular AFM system design capable of working with both passive and active probes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gu et al. “Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey”. In: IEEE Transactions on Automation Science and Engineering 13.1 (Jan. 2016), pp. 313–332. issn: 1558-3783.

    Google Scholar 

  2. S. Devasia, E. Eleftheriou, and S. O. R. Moheimani. “A Survey of Control Issues in Nanopositioning”. In: IEEE Transactions on Control Systems Technology 15.5 (Sept. 2007), pp. 802–823. issn: 2374-0159.

    Google Scholar 

  3. Gene F Franklin, J David Powell, and Abbas Emami-Naeini. Feedback control of dynamic systems. Pearson London, 2015.

    Google Scholar 

  4. B. A. Francis and W. M. Wonham. “The Internal Model Principle of Control Theory”. In: Automatica 12.5 (Sept. 1976), pp. 457–465.

    Google Scholar 

  5. Fangzhou Xia et al. “Design and Control of a Multi-actuated High-bandwidth and Large-range Scanner for Atomic Force Microscopy”. In: 2018 Annual American Control Conference (ACC). June 2018, pp. 4330–4335.

    Google Scholar 

  6. Fangzhou Xia et al. “Bandwidth Based Repetitive Controller Design for a Modular Multi-actuated AFM Scanner”. In: 2019 American Control Conference (ACC). July 2019, pp. 3776–3781.

    Google Scholar 

  7. K. Srinivasan and F. Shaw. “Analysis and Design of Repetitive Control Systems using the Regeneration Spectrum”. In: 1990 American Control Conference. May 1990, pp. 1150–1155.

    Google Scholar 

  8. L. Liu et al. “Compensation of hysteresis in piezoelectric actuator with iterative learning control”. In: ICAIM’09. July 2009, pp. 1300–1305.

    Google Scholar 

  9. A. J. Fleming and S. O. R. Moheimani. “Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners”. In: IEEE Transactions on Control Systems Technology 14.1 (Jan. 2006), pp. 33–44. issn: 2374-0159.

    Google Scholar 

  10. S. Aphale, A. J. Fleming, and S. O. R. Moheimani. “High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control”. In: Micro Nano Letters 2.1 (Mar. 2007), pp. 9–12. issn: 1750-0443.

    Google Scholar 

  11. Qingsong Xu and Kok Kiong Tan. Advanced control of piezoelectric micro-/nano-positioning systems. Springer, 2016.

    Google Scholar 

  12. Chen Yang et al. “Design and Control of a Multi-Actuated Nanopositioning Stage with Stacked Structure”. In: 2019 American Control Conference (ACC) (2019), pp. 3782–3788.

    Google Scholar 

  13. W. Chen et al. “Disturbance-Observer-Based Control and Related Methods—An Overview”. In: IEEE Transactions on Industrial Electronics 63.2 (Feb. 2016), pp. 1083–1095. issn: 1557-9948.

    Google Scholar 

  14. Ru Changhai and Sun Lining. “Hysteresis and creep compensation for piezo-electric actuator in open-loop operation”. In: Sensors and Actuators A: Physical 122.1 (2005), pp. 124–130.

    Google Scholar 

  15. Yanding Qin et al. “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications”. In: IEEE/ASME Transactions on Mechatronics 18.3 (2012), pp. 981–989.

    Google Scholar 

  16. Ram Venkataraman Iyer, Xiaobo Tan, and PS Krishnaprasad. “Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators”. In: IEEE Transactions on Automatic Control 50.6 (2005), pp. 798–810.

    Google Scholar 

  17. Ram V Iyer and Xiaobo Tan. “Control of hysteretic systems through inverse compensation”. In: IEEE Control Systems Magazine 29.1 (2009), pp. 83–99.

    Google Scholar 

  18. Jon Åge Stakvik. “Identification, Inversion and Implementaion of the Preisach Hysteresis Model in Nanopositioning”. MA thesis. Institutt for teknisk kybernetikk, 2014.

    Google Scholar 

  19. Y. Shan and Kam K. Leang. “Repetitive Control with Prandtl-Ishlinskii Hysteresis Inverse for Piezo-based Nanopositioning”. In: ACC’09, pp. 301–306.

    Google Scholar 

  20. John A Main, Ephrahim Garcia, and David V Newton. “Precision position control of piezoelectric actuators using charge feedback”. In: Journal of Guidance, control, and dynamics 18.5 (1995), pp. 1068–1073.

    Google Scholar 

  21. Micky Rakotondrabe et al. “Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control”. In: IEEE/ASME Transactions on Mechatronics 20 (2015), pp. 519–531.

    Google Scholar 

  22. Chen Yang et al. “Charge controller with decoupled and self-compensating configurations for linear operation of piezoelectric actuators in a wide bandwidth”. In: IEEE Transactions on Industrial Electronics 66.7 (2018), pp. 5392–5402.

    Google Scholar 

  23. Chen Yang et al. “Modeling and Control of Piezoelectric Hysteresis: A Polynomial-Based Fractional Order Disturbance Compensation Approach”. In: IEEE Transactions on Industrial Electronics (2020).

    Google Scholar 

  24. Chen Yang et al. “Comprehensive study of charge-based motion control for piezoelectric nanopositioners: Modeling, instrumentation and controller design”. In: Mechanical Systems and Signal Processing 166 (2022), p. 108477. issn: 0888-3270. https://www.sciencedirect.com/science/article/pii/S0888327021008219.

  25. Ron Reifenberger and Arvind Raman. ME 597/PHYS 570: Fundamentals of Atomic Force Microscopy (Fall 2010). Sept. 2010. url:https://nanohub.org/resources/9598.

  26. Igor Ekhielevich Dzyaloshinskii, Efrat M Lifshitz, and Lev P Pitaevskii. “The general theory of van der Waals forces”. In: Advances in Physics 10.38 (1961), pp. 165–209.

    Google Scholar 

  27. N Garcia and Vu Thien Binh. “van der Waals forces in atomic force microscopy operating in liquids: A spherical-tip model”. In: Physical Review B 46.12 (1992), p. 7946.

    Google Scholar 

  28. Sebastian Rützel, Soo Il Lee, and Arvind Raman. “Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials”. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459.2036 (2003), pp. 1925–1948.

    Google Scholar 

  29. Brian A Todd and Steven J Eppell. “Probing the limits of the Derjaguin approximation with scanning force microscopy”. In: Langmuir 20.12 (2004), pp. 4892–4897.

    Google Scholar 

  30. David C Lin, Emilios K Dimitriadis, and Ferenc Horkay. “Robust strategies for automated AFM force curve analysis—I. Non-adhesive indentation of soft, inhomogeneous materials”. In: Journal of biomechanical engineering 129.3 (2007), pp. 430–440.

    Google Scholar 

  31. Nancy A Burnham et al. “Probing the surface forces of monolayer films with an atomic-force microscope”. In: Physical review letters 64.16 (1990), p. 1931.

    Google Scholar 

  32. Daniel Maugis. “Adhesion of spheres: the JKR-DMT transition using a Dugdale model”. In: Journal of colloid and interface science 150.1 (1992), pp. 243–269.

    Google Scholar 

  33. Fangzhou Xia et al. “Model and Controller Design for High-speed Atomic Force Microscope Imaging and Autotuning”. In: Proceedings of the ASPE Spring Topical Meeting on Design and Control of Precision Mechatronic Systems. American Society for Precision Engineering. 2020.

    Google Scholar 

  34. F. Xia et al. “Induced vibration contact detection for minimizing cantilever tip-sample interaction forces in jumping mode atomic force microscopy”. In: ACC’17, pp. 4141–4146.

    Google Scholar 

  35. F. Javier Rubio-Sierra, Rafael Vazquez, and Robert W. Stark. “Transfer Function Analysis of the Micro Cantilever Used in Atomic Force Microscopy”. In: IEEE Transactions on Nanotechnology 5.6 (2006), pp. 692–700.

    Google Scholar 

  36. Horacio V Guzman, Pablo D Garcia, and Ricardo Garcia. “Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments”. In: Beilstein journal of nanotechnology 6.1 (2015), pp. 369–379.

    Google Scholar 

  37. Daniel Kiracofe et al. VEDA: Virtual Environment for Dynamic AFM. June 2012. https://nanohub.org/resources/veda.

  38. S. Belikov and S. Magonov. “Simulation of atomic force microscopy of molecular structures and interplay with experiment”. In: Proceedings of the 2010 American Control Conference. June 2010, pp. 5745–5750.

    Google Scholar 

  39. A Varol et al. “Numerical simulation of nano scanning in intermittent-contact mode AFM underQcontrol”. In: Nanotechnology 19.7 (Jan. 2008), p. 075503.

    Google Scholar 

  40. S. Belikov and S. Magonov. “Tip-sample interaction force modeling for AFM simulation, control design, and material property measurement”. In: ACC’11, pp. 2867–2872.

    Google Scholar 

  41. S. Belikov and S. Magonov. “Simulation of Asymptotic Amplitude-Phase Dynamics for AFM Resonant Modes*”. In: ACC’19, pp. 2477–2482.

    Google Scholar 

  42. K.J. Astrom and T. Hagglund. “Automatic tuning of simple regulators with specifications on phase and amplitude margins”. In: Automatica 20.5 (1984), pp. 645–651.

    Google Scholar 

  43. Hui Liu et al. “Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy”. In: Micron 104 (2018), pp. 26–36.

    Google Scholar 

  44. Ahmad Ahmad, Andreas Schuh, and Ivo W. Rangelow. “Adaptive AFM scan speed control for high aspect ratio fast structure tracking”. In: Review of Scientific Instruments 85.10 (2014), p. 103706.

    Google Scholar 

  45. Yudong Zhang et al. “Note: A novel atomic force microscope fast imaging approach: Variable-speed scanning”. In: Review of Scientific Instruments 82.5 (2011), p. 056103.

    Google Scholar 

  46. Ying Wu, Qingze Zou, and Chanmin Su. “A Current Cycle Feedback Iterative Learning Control Approach for AFM Imaging”. In: IEEE Transactions on Nanotechnology 8 (2009), pp. 515–527.

    Google Scholar 

  47. James L Bosse and Bryan D Huey. “Error-corrected AFM: a simple and broadly applicable approach for substantially improving AFM image accuracy”. In: Nanotechnology 25.15 (Mar. 2014), p. 155704.

    Google Scholar 

  48. Roger A. Braker et al. “Improving the Image Acquisition Rate of an Atomic Force Microscope Through Spatial Subsampling and Reconstruction”. In: IEEE/ASME Transactions on Mechatronics 25.2 (2020), pp. 570–580.

    Google Scholar 

  49. Ihsan Gunev et al. “Adaptive Q control for tapping-mode nanoscanning using a piezoactuated bimorph probe”. In: Review of scientific instruments 78.4 (2007), p. 043707.

    Google Scholar 

  50. János Kokavecz et al. “Imaging bandwidth of the tapping mode atomic force microscope probe”. In: Phys. Rev. B 73 (15 Apr. 2006), p. 155403.

    Google Scholar 

  51. Matthew W. Fairbairn and S.O. Reza Moheimani. “A New Approach to Active Q Control of an Atomic Force Microscope Micro-cantilever Operating in Tapping Mode”. In: IFAC Proceedings Volumes 46.5 (2013). 6th IFAC Symposium on Mechatronic Systems, pp. 368–374. issn: 1474-6670. https://www.sciencedirect.com/science/article/pii/S1474667015362406.

  52. Tomás R Rodrıguez and Ricardo Garcıa. “Theory of Q control in atomic force microscopy”. In: Applied Physics Letters 82.26 (2003), pp. 4821–4823.

    Google Scholar 

  53. T Sulchek et al. “High-speed tapping mode imaging with active Q control for atomic force microscopy”. In: Applied Physics Letters 76.11 (2000), pp. 1473–1475.

    Google Scholar 

  54. M. B. Coskun et al. “Q Control of an Active AFM Cantilever With Differential Sensing Configuration”. In: IEEE Transactions on Control Systems Technology 27.5 (Sept. 2019), pp. 2271–2278. issn: 2374-0159.

    Google Scholar 

  55. Michael G. Ruppert and S. O. Reza Moheimani. “Dynamics and Control of Active Microcantilevers”. In: Encyclopedia of Systems and Control. Ed. by John Baillieul and Tariq Samad. London: Springer London, 2019, pp. 1–6. isbn: 978-1-4471-5102-9.

    Google Scholar 

  56. M. G. Ruppert et al. “Model-based Q Factor Control for Photothermally Excited Microcantilevers”. In: Int. Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). Helsinki, Finland, July 1, 2019. published.

    Google Scholar 

  57. M. G. Ruppert and S. O. R. Moheimani. “Dynamics and Control of Active Microcantilevers”. In: Encyclopedia of Systems and Control. Ed. by John Baillieul and Tariq Samad. Vol. 2. Springer London, Nov. 16, 2019. isbn: 978-1-4471-5102-9. https://rd.springer.com/referenceworkentry/10.1007%2F978-1-4471-5102-9_184-2. published.

  58. Bernardo Dantas Aumond. “High precision stereo profilometry”. PhD thesis. Massachusetts Institute of Technology, 2001.

    Google Scholar 

  59. J. Wang and Q. Zou. “Rapid Probe Engagement and Withdrawal With Force Minimization in Atomic Force Microscopy: A Learning-Based Online-Searching Approach”. In: IEEE/ASME Transactions on Mechatronics 25.2 (2020), pp. 581–593.

    Google Scholar 

  60. Chanmin Su et al. Method and apparatus of using peak force tapping mode to measure physical properties of a sample. US Patent 9,291,640. Mar. 2016.

    Google Scholar 

  61. Thomas Bress. Effective LabVIEW Programming. Nts Press, 2013.

    Google Scholar 

  62. Antoine Dujardin et al. “Automated multi-sample acquisition and analysis using atomic force microscopy for biomedical applications”. In: PloS one 14.3 (2019).

    Google Scholar 

  63. TE Technology Inc. Thermoelectric Module Publications. 2021. url:https://tetech.com/downloads/ (visited on 02/12/2021).

  64. Natalia Kristi et al. “Atomic Force Microscopy in Mechanoimmunology Analysis: A New Perspective for Cancer Immunotherapy”. In: Biotechnology Journal (2020), p. 1900559.

    Google Scholar 

  65. Teodor Gotszalk et al. “Diagnostics of micro-and nanostructure using the scanning probe microscopy”. In: (Jan. 2005).

    Google Scholar 

  66. Teodor Gotszalk et al. “Microfabricated cantilever with metallic tip for electrostatic and capacitance microscopy and its application to investigation of semiconductor devices”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22.2 (2004), pp. 506–509.

    Google Scholar 

  67. Heungjoo Shin. “Fabrication of Atomic Force Microscope Probes Integrated with Microelectrodes for Micro Four-Point Porbe and SECM-AFM”. PhD thesis. Georgia Institute of Technology, 2006.

    Google Scholar 

  68. Wilhelm Melitz et al. “Kelvin probe force microscopy and its application”. In: Surface Science Reports 66.1 (2011), pp. 1–27. issn: 0167-5729. http://www.sciencedirect.com/science/article/pii/S0167572910000841.

  69. Liam Collins et al. “Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform”. In: ACS Nano 11 (Aug. 2017).

    Google Scholar 

  70. Bruno Schuler et al. “Contrast Formation in Kelvin Probe Force Microscopy of Single -Conjugated Molecules”. In: Nano letters 14 (May 2014).

    Google Scholar 

  71. David Richards et al. “Near-field microscopy by elastic light scattering from a tip”. In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362.1817 (2004), pp. 787–805.

    Google Scholar 

  72. S. Amarie and F. Keilmann. “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy”. In: Phys. Rev. B 83 (4 Jan. 2011), p. 045404.

    Google Scholar 

  73. N. Maghelli et al. “Optical near-field harmonic demodulation in apertureless microscopy”. In: Journal of Microscopy 202.1 (), pp. 84–93.

    Google Scholar 

  74. Bernhard Knoll and Fritz Keilmann. “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy”. In: Optics Communications 182.4 (2000), pp. 321–328. issn: 0030-4018. http://www.sciencedirect.com/science/article/pii/S0030401800008269.

  75. Le Wang and Xiaoji G. Xu. “Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction”. In: Nature Communications 6 (Nov. 2015). Article, 8973 EP -.

    Google Scholar 

  76. Florian Huth et al. “Nano-FTIR Absorption Spectroscopy of Molecular Fingerprints at 20 nm Spatial Resolution”. In: Nano Letters 12.8 (2012). PMID: 22703339, pp. 3973–3978.

    Google Scholar 

  77. Iban Amenabar et al. “Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy”. In: Nature Communications 4 (Dec. 2013), p. 2890.

    Google Scholar 

  78. Iban Amenabar et al. “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy”. In: Nat Commun 8 (Feb. 2017), pp. 14402–14402. issn: 2041-1723. https://www.ncbi.nlm.nih.gov/pubmed/28198384.

  79. Susana Moreno Flores and José L Toca-Herrera. “The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques”. In: Nanoscale 1.1 (2009), pp. 40–49.

    Google Scholar 

  80. André Meister et al. “FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond”. In: Nano Letters 9.6 (June 2009), pp. 2501–2507. issn: 1530-6984.

    Google Scholar 

  81. Luca Hirt et al. “Template-Free 3D Microprinting of Metals Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodeposition”. In: Advanced Materials 28.12 (2016), pp. 2311–2315.

    Google Scholar 

  82. Yongbing Wen et al. “Nanorobotic Manipulation System for 360\({ }^{\circ }\) Characterization Atomic Force Microscopy”. In: IEEE Transactions on Industrial Electronics 67.4 (2020), pp. 2916–2924.

    Google Scholar 

  83. R. Sri Muthu Mrinalini and G. R. Jayanth. “A System for Replacement and Reuse of Tips in Atomic Force Microscopy”. In: IEEE/ASME Transactions on Mechatronics 21.4 (2016), pp. 1943–1953.

    Google Scholar 

  84. K. S. Vikrant, K. Hithiksha, and G. R. Jayanth. “An Automated AFM Tip-Replacement System for In Situ Tip-Replacement”. In: IEEE/ASME Transactions on Mechatronics 26.2 (2021), pp. 798–806.

    Google Scholar 

  85. Shuai Yuan et al. “AFM Tip Position Control in situ for Effective Nanomanipulation”. In: IEEE/ASME Transactions on Mechatronics 23.6 (2018), pp. 2825–2836.

    Google Scholar 

  86. David Nečas and Petr Klapetek. “Gwyddion: an open-source software for SPM data analysis”. In: Open Physics 10.1 (2012), pp. 181–188.

    Google Scholar 

  87. Sergei V Kalinin et al. Big, deep, and smart data in scanning probe microscopy. 2016.

    Google Scholar 

  88. I. Soltani Bozchalooi. “Design and Control of High-Speed and Large-Range Atomic Force Microscope”. PhD thesis. Massachusetts Institute of Technology, 2015.

    Google Scholar 

  89. Fangzhou Xia. “Design and control optimization for high-speed jumping mode Atomic Force Microscope”. PhD thesis. Massachusetts Institute of Technology, 2017.

    Google Scholar 

  90. Takeshi Fukuma and Suzanne P. Jarvis. “Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions”. In: Review of Scientific Instruments 77.4 (2006), p. 043701.

    Google Scholar 

  91. Fangzhou Xia. “Design and Control of Versatile High-speed and Large-range Atomic Force Microscopes”. PhD thesis. Massachusetts Institute of Technology, 2020.

    Google Scholar 

  92. I. Soltani Bozchalooi et al. “Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging”. In: Ultramicroscopy 160 (2016), pp. 213–224. issn: 0304-3991. http://www.sciencedirect.com/science/article/pii/S0304399115300528.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). AFM Imaging Control and System Integration. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_9

Download citation

Publish with us

Policies and ethics