Skip to main content

AFM Nano-Positioning System Design

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

The nano-positioning system is a crucial component in the AFM that enables its imaging functionality, along with the cantilever probe. This chapter provides a detailed presentation of nano-positioning system designs, starting with an overview of generic nano-positioners, flexures, fixtures, and actuators. In AFM imaging, coarse positioners with a millimeter range and fine scanners with hundreds of micrometer range and sub-nanometer resolution work together to control the relative position between the cantilever probe tip and the sample. Given the specialized positioning requirements of AFM, the discussion then expands to cover the design, modeling, and performance characterization of AFM nano-positioners. Finally, examples of high-bandwidth scanners for high-speed AFM imaging are introduced based on research results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Timothy D Tuttle. Understanding and modeling the behavior of a harmonic drive gear transmission. Tech. rep. MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, 1992.

    Google Scholar 

  2. Timothy D Tuttle and Warren Seering. “Modeling a harmonic drive gear transmission”. In: [1993] Proceedings IEEE International Conference on Robotics and Automation. IEEE. 1993, pp. 624–629.

    Google Scholar 

  3. Yuichi Kiryu. Harmonic gear apparatus. US Patent 4,619,156. Oct. 1986.

    Google Scholar 

  4. Tomislav Jukic and N Peric. “Model based backlash compensation”. In: Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148). Vol. 2. IEEE. 2001, pp. 775–780.

    Google Scholar 

  5. YS Tarng, JY Kao, and YS Lin. “Identification of and compensation for backlash on the contouring accuracy of CNC machining centres”. In: The International Journal of Advanced Manufacturing Technology 13.2 (1997), pp. 77–85.

    Google Scholar 

  6. Rastko R Selmic and Frank L Lewis. “Backlash compensation in nonlinear systems using dynamic inversion by neural networks”. In: Asian Journal of Control 2.2 (2000), pp. 76–87.

    Google Scholar 

  7. Georg E. Fantner et al. “Components for high speed atomic force microscopy”. In: Ultramicroscopy 106.8 (2006). Proceedings of the Seventh International Conference on Scanning Probe Microscopy, Sensors and Nanostructures, pp. 881–887. issn: 0304-3991. url: https://www.sciencedirect.com/science/article/pii/S0304399106000593.

  8. Jonathan B Hopkins and Martin L Culpepper. “Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)-Part I: Principles”. In: Precision Engineering 34.2 (2010), pp. 259–270.

    Google Scholar 

  9. Jonathan B Hopkins and Martin L Culpepper. “Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part II: Practice”. In: Precision Engineering 34.2 (2010), pp. 271–278.

    Google Scholar 

  10. Jonathan B Hopkins and David McCalib Jr. “Synthesizing multi-axis flexure systems with decoupled actuators”. In: Precision Engineering 46 (2016), pp. 206–220.

    Google Scholar 

  11. Jonathan Brigham Hopkins. “Design of flexure-based motion stages for mechatronic systems via freedom, actuation and constraint topologies (FACT)”. PhD thesis. Massachusetts Institute of Technology, 2010.

    Google Scholar 

  12. Yuen Kuan Yong, Tien-Fu Lu, and Daniel C Handley. “Review of circular flexure hinge design equations and derivation of empirical formulations”. In: Precision engineering 32.2 (2008), pp. 63–70.

    Google Scholar 

  13. Scott Jordan and Stefan Vorndran. Piezo flexure actuators, nanopositioners, and other piezo mechanisms for precision motion control applications. https://www.pi-usa.us/en/tech-blog/piezo-flexure-actuators-nanopositioners-and-other-piezo-mechanisms-for-precision-motion-control-applications/. Accessed: 2020-02-02.

  14. SO Reza Moheimani and Andrew J Fleming. Piezoelectric transducers for vibration control and damping. Springer Science & Business Media, 2006.

    Google Scholar 

  15. Shupeng Wang et al. “Design and driving characteristics of a novel ‘pusher’type piezoelectric actuator”. In: Smart Materials and Structures 25.1 (2015), p. 015005.

    Google Scholar 

  16. Jianping Li, Hu Huang, and Takeshi Morita. “Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review”. In: Sensors and Actuators A: Physical (2019).

    Google Scholar 

  17. Jian Li et al. “Design and development of a new piezoelectric linear Inch-worm actuator”. In: Mechatronics 15.6 (2005), pp. 651–681.

    Google Scholar 

  18. JY Peng and XB Chen. “Modeling of piezoelectric-driven stick-slip actuators”. In: IEEE/ASME transactions on mechatronics 16.2 (2010), pp. 394–399.

    Google Scholar 

  19. Sebastien Mazerolle et al. “Positioning, Handling and Measuring inside a Scanning Electron Microscope”. In: 2003.

    Google Scholar 

  20. QS Zhang et al. “Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces”. In: The International Journal of Advanced Manufacturing Technology 61.9–12 (2012), pp. 1029–1034.

    Google Scholar 

  21. Long Cheng et al. “A neural-network-based controller for piezoelectric-actuated stick-slip devices”. In: IEEE Transactions on Industrial Electronics 65.3 (2017), pp. 2598–2607.

    Google Scholar 

  22. Kenji Uchino. “Piezoelectric ultrasonic motors: overview”. In: Smart materials and structures 7.3 (1998), p. 273.

    Google Scholar 

  23. Toshiiku Sashida and Takashi Kenjo. An introduction to ultrasonic motors. Clarendon Press Oxford, 1993.

    Book  Google Scholar 

  24. Nesbitt W Hagood and Andrew J McFarland. “Modeling of a piezoelectric rotary ultrasonic motor”. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 42.2 (1995), pp. 210–224.

    Google Scholar 

  25. Guanqiao Shan et al. “Contributed Review: Application of voice coil motors in high-precision positioning stages with large travel ranges”. In: Review of Scientific Instruments 86.10 (2015), p. 101501.

    Google Scholar 

  26. Won-jong Kim and David L. Trumper. “High-precision magnetic levitation stage for photolithography”. In: 1998.

    Google Scholar 

  27. Won-jong Kim, Shobhit Verma, and Huzefa Shakir. “Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems”. In: Precision Engineering 31.4 (2007), pp. 337–350.

    Google Scholar 

  28. Jae-Seok Choi and Jeonghoon Yoo. “Design of a Halbach magnet array based on optimization techniques”. In: IEEE Transactions on Magnetics 44.10 (2008), pp. 2361–2366.

    Google Scholar 

  29. Young-Man Choi et al. “A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage”. In: Review of scientific instruments 80.4 (2009), p. 045106.

    Google Scholar 

  30. Jaqueline Stauffenberg et al. “Measurement Precision of a Planar Nanopositioning Machine with a Range of Motion of Oslash;100 mm”. In: Applied Sciences 12.15 (2022). issn: 2076–3417. url: https://www.mdpi.com/2076-3417/12/15/7843.

  31. Jaqueline Stauffenberg et al. “Investigations on the positioning accuracy of the Nano Fabrication Machine (NFM-100)”. In: tm-Technisches Messen 88.9 (2021), pp. 581–589.

    Google Scholar 

  32. Tarzen Kwok. “Design and implementation of a high precision profilometer”. PhD thesis. Massachusetts Institute of Technology, 1995.

    Google Scholar 

  33. Y. R. Teo, Y. K. Yong, and A. J. Fleming. “A Comparison Of Scanning Methods And The Vertical Control Implications For Scanning Probe Microscopy”. In: Asian Journal of Control 30.4 (July 1, 2018), pp. 1–15. url: http://www.precisionmechatronicslab.com/wp-content/uploads/2017/01/J17d.pdf. published.

  34. Paul I Mininni et al. Method and apparatus for rapid automatic engagement of a probe. US Patent 7,665,349. Feb. 2010.

    Google Scholar 

  35. Tetsuo Ohara and K Youcef-Toumi. “Dynamics and control of piezotube actuators for subnanometer precision applications”. In: Proceedings of 1995 American Control Conference-ACC’95. Vol. 5. IEEE. 1995, pp. 3808–3812.

    Google Scholar 

  36. Fangzhou Xia. “Design and Control of Versatile High-speed and Large-range Atomic Force Microscopes”. PhD thesis. Massachusetts Institute of Technology, 2020.

    Google Scholar 

  37. Gene F Franklin et al. Feedback control of dynamic systems. Pearson London, 2015.

    Google Scholar 

  38. DA Hall. “Review nonlinearity in piezoelectric ceramics”. In: Journal of materials science 36.19 (2001), pp. 4575–4601.

    Google Scholar 

  39. PI. Electrical Operation of Piezo Actuators. https://www.piceramic.com/en/piezo-technology/properties-piezo-actuators/electrical-operation/. Accessed:2020-04-02.

  40. T. G. Zsurzsan et al. “Preisach model of hysteresis for the Piezoelectric Actuator Drive”. In: IECON’15. Nov. 2015, pp. 002788–002793.

    Google Scholar 

  41. Fangzhou Xia et al. “Design and Control of a Multi-actuated High-bandwidth and Large-range Scanner for Atomic Force Microscopy”. In: 2018 Annual American Control Conference (ACC). June 2018, pp. 4330–4335.

    Google Scholar 

  42. Wei Tech Ang et al. “Modeling rate-dependent hysteresis in piezoelectric actuators”. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). Vol. 2. IEEE. 2003, pp. 1975–1980.

    Google Scholar 

  43. Ruili Dong et al. “A neural networks based model for rate-dependent hysteresis for piezoceramic actuators”. In: Sensors and Actuators A: Physical 143.2 (2008), pp. 370–376.

    Google Scholar 

  44. Isaak D Mayergoyz. Mathematical models of hysteresis and their applications. Academic Press, 2003.

    Google Scholar 

  45. Jongkyu Park and Wonkyu Moon. “Hysteresis compensation of piezoelectric actuators: The modified Rayleigh model”. In: Ultrasonics 50.3 (2010), pp. 335–339. issn: 0041-624X. url: http://www.sciencedirect.com/science/article/pii/S0041624X09001498.

  46. Hewon Jung and Dae-Gab Gweon. “Creep characteristics of piezoelectric actuators”. In: Review of scientific Instruments 71.4 (2000), pp. 1896–1900.

    Google Scholar 

  47. Lennart Ljung. “System Identification”. In: Wiley Encyclopedia of Electrical and Electronics Engineering. American Cancer Society, 2017, pp. 1–19. isbn: 9780471346081.

    Google Scholar 

  48. P Kumar Rahi and Rajesh Mehra. “Analysis of power spectrum estimation using welch method for various window techniques”. In: International Journal of Emerging Technologies and Engineering 2.6 (2014), pp. 106–109.

    Google Scholar 

  49. Peter Welch. “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms”. In: IEEE Transactions on audio and electroacoustics 15.2 (1967), pp. 70–73.

    Google Scholar 

  50. J. Stakvik et al. “On Implementation of the Preisach Model Identification and Inversion for Hysteresis Compensation”. In: 36 (July 2015), pp. 133–142.

    Google Scholar 

  51. Jon Åge Stakvik. “Identification, Inversion and Implementaion of the Preisach Hysteresis Model in Nanopositioning”. MA thesis. Institutt for teknisk kybernetikk, 2014.

    Google Scholar 

  52. Ivanka Stamova, Haydar Akca, and Gani Stamov. “Qualitative analysis of dynamic activity patterns in neural networks”. In: Journal of Applied Mathematics 2011 (2011).

    Google Scholar 

  53. AA Adly and SK Abd-El-Hafiz. “Using neural networks in the identification of Preisach-type hysteresis models”. In: IEEE Transactions on Magnetics 34.3 (1998), pp. 629–635.

    Google Scholar 

  54. Mohammad Asif Zaman and Urmita Sikder. “Bouc-Wen hysteresis model identification using modified firefly algorithm”. In: Journal of Magnetism and Magnetic Materials 395 (2015), pp. 229–233.

    Google Scholar 

  55. Klaus Kuhnen. “Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach”. In: European journal of control 9.4 (2003), pp. 407–418.

    Google Scholar 

  56. Frédéric Eghiaian et al. “High-speed atomic force microscopy: Imaging and force spectroscopy”. In: FEBS Letters 588.19 (2014). SI: Single molecule techniques - Applications in biology, pp. 3631–3638. issn: 0014-5793. url: http://www.sciencedirect.com/science/article/pii/S001457931400489X.

  57. Toshio Ando. “Molecular machines directly observed by high-speed atomic force microscopy”. In: FEBS Letters 587.8 (2013). The many faces of proteins, pp. 997–1007. issn: 0014-5793. url: http://www.sciencedirect.com/science/article/pii/S0014579313000136.

  58. Toshio Ando. “Filming Dynamic Processes of Proteins by High-Speed AFM”. In: Biophysical Journal 104.2, Supplement 1 (2013), 386a-. issn: 0006-3495. url: http://www.sciencedirect.com/science/article/pii/S000634951203398X.

  59. Ignacio Casuso et al. “Contact-Mode High-Resolution High-Speed Atomic Force Microscopy Movies of the Purple Membrane”. In: Biophysical Journal 97.5 (2009), pp. 1354–1361. issn: 0006-3495. url: http://www.sciencedirect.com/science/article/pii/S0006349509011527.

  60. Martina Rangl et al. “Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy”. In: Journal of Molecular Biology 429.7 (2017), pp. 977–986. issn: 0022-2836. url: http://www.sciencedirect.com/science/article/pii/S0022283617301080.

  61. Toshio Ando et al. “A high-speed atomic force microscope for studying biological macromolecules”. In: Proceedings of the National Academy of Sciences 98.22 (2001), pp. 12468–12472. issn: 0027-8424. eprint: https://www.pnas.org/content/98/22/12468.full.pdf. url: https://www.pnas.org/content/98/22/12468.

  62. Qi-Hui Wu and Junyong Kang. “Applications of fast scanning tunneling microscopy: A review”. In: Materials and manufacturing processes 22.1 (2007), pp. 22–27.

    Google Scholar 

  63. I. Soltani Bozchalooi. “Design and Control of High-Speed and Large-Range Atomic Force Microscope”. PhD thesis. Massachusetts Institute of Technology, 2015.

    Google Scholar 

  64. A. Ahmad et al. “Large area fast-AFM scanning with active “Quattro” cantilever arrays”. In: J. Vac. Sci. Technolo. B 34.6 (2016), 06KM03.

    Google Scholar 

  65. Toshio Ando. “High-speed AFM imaging”. In: Current Opinion in Structural Biology 28 (2014), pp. 63–68. issn: 0959-440X. url: http://www.sciencedirect.com/science/article/pii/S0959440X14000906.

  66. H. J. Mamin et al. “High-speed scanning tunneling microscopy: Principles and applications”. In: Journal of Applied Physics 75.1 (1994), pp. 161–168.

    Google Scholar 

  67. F. Xia, I. S. Bozchalooi, and K. Youcef-Toumi. “Induced vibration contact detection for minimizing cantilever tip-sample interaction forces in jumping mode atomic force microscopy”. In: 2017 American Control Conference (ACC). May 2017, pp. 4141–4146.

    Google Scholar 

  68. Fangzhou Xia. “Design and control optimization for high-speed jumping mode Atomic Force Microscope”. PhD thesis. Massachusetts Institute of Technology, 2017.

    Google Scholar 

  69. I. Soltani Bozchalooi et al. “Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging”. In: Ultramicroscopy 160 (2016), pp. 213–224. issn: 0304-3991. url: http://www.sciencedirect.com/science/article/pii/S0304399115300528.

  70. Y. K. Yong et al. “Invited Review Article: High-speed flexure-guided nanopositioning: Mechanical design and control issues”. In: Review of Scientific Instruments 83.12 (2012), p. 121101.

    Google Scholar 

  71. Chen Yang et al. “Design and Control of a Multi-Actuated Nanopositioning Stage with Stacked Structure”. In: 2019 American Control Conference (ACC) (2019), pp. 3782–3788.

    Google Scholar 

  72. Brian J Kenton. “Design, characterization, and control of a high-bandwidth serial-kinematic nanopositioning stage for scanning probe microscopy applications”. PhD thesis. 2010.

    Google Scholar 

  73. J-Y Wang, N Mullin, and J K Hobbs. “High-speed large area atomic force microscopy using a quartz resonator”. In: Nanotechnology 29.33 (June 2018), p. 335502.

    Google Scholar 

  74. M. J. Rost et al. “Scanning probe microscopes go video rate and beyond”. In: Review of Scientific Instruments 76.5 (2005), p. 053710.

    Google Scholar 

  75. E. C. M. Disseldorp et al. “MEMS-based high speed scanning probe microscopy”. In: Review of Scientific Instruments 81.4 (2010), p. 043702.

    Google Scholar 

  76. E Guliyev et al. “High speed quasi-monolithic silicon/piezostack SPM scanning stage”. In: Microelectronic engineering 98 (2012), pp. 520–523.

    Google Scholar 

  77. Y. K. Yong and K. K. Leang. “Mechanical Design of High-Speed Nanopositioning Systems”. In: ed. by C. Ru, X. Liu, and Y. Sun. Springer, Feb. 1, 2016. Chap. 3. published.

    Google Scholar 

  78. Chen Yang et al. “Design of a high-bandwidth tripod scanner for high speed atomic force microscopy”. In: Scanning 38.6 (2016), pp. 889–900.

    Google Scholar 

  79. G. Schitter et al. “Design and Modeling of a High-Speed AFM-Scanner”. In: IEEE Transactions on Control Systems Technology 15.5 (Sept. 2007), pp. 906–915. issn: 2374-0159.

    Google Scholar 

  80. Rodolf Herfst et al. “A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points”. In: Review of Scientific Instruments 86.11 (2015), p. 113703.

    Google Scholar 

  81. Toshio Ando. “High-speed atomic force microscopy and its future prospects”. In: Biophysical reviews 10.2 (2018), pp. 285–292.

    Google Scholar 

  82. NanoWorld. High Speed Scanning with SPM. 2020. url: https://www.highspeedscanning.com/ (visited on 03/24/2020).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). AFM Nano-Positioning System Design. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_7

Download citation

Publish with us

Policies and ethics