Skip to main content

AFM Probe Functionalization and Active Element Fabrication

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

This chapter expands on the previously discussed nanofabrication processes to cover the integration of functional components into AFM cantilever probes. Advanced nanofabrication techniques empower AFM probes with a variety of new capabilities to meet experimental needs. First, the modification of AFM probes on both the tip and the microcantilever are discussed for specialized imaging applications. Next, nanofabrication techniques to embed functional elements into AFM cantilever probes for sensing and actuation are discussed. The cantilever probe nanofabrication process can vary in the sequences and tools needed depending on their availability, and step-by-step instructions for several probe designs are provided as examples. In the end, a number of sensing applications using functionalized tipless microcantilevers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiancheng Ma, Huiliang Cao, and Chong Shen. “A Temperature Error Parallel Processing Model for MEMS Gyroscope based on a Novel Fusion Algorithm”. In: Electronics 9.3 (2020). issn: 2079-9292. url: https://www.mdpi.com/2079-9292/9/3/499.

  2. Ville Kaajakari et al. “Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems”. In: Las Vegas, NV: Small Gear Publishing (2009).

    Google Scholar 

  3. Thomas Michels, Ivo W Rangelow, and Vladimir Aksyuk. “Fabrication process for an optomechanical transducer platform with integrated actuation”. In: J. Res. Natl. Inst. Stand. Technol. 121 (2016), pp. 507–536.

    Google Scholar 

  4. Ivo W. Rangelow et al. “Review Article: Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication”. In: Journal of Vacuum Science & Technology B 35.6 (2017), 06G101.

    Google Scholar 

  5. Hoe Joon Kim et al. “Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever”. In: Nanotechnology 23.49 (2012), p. 495302.

    Google Scholar 

  6. Richard Newton et al. “Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces”. In: nature protocols 12.11 (2017), p. 2275.

    Google Scholar 

  7. EI Givargizov et al. “Ultrasharp diamond-coated silicon tips for scanning-probe devices”. In: Microelectronic engineering 41 (1998), pp. 499–502.

    Google Scholar 

  8. IW Rangelow et al. “Micromachined ultrasharp silicon and diamond-coated silicon tip as a stable field-emission electron source and a scanning probe microscopy sensor with atomic sharpness”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16.6 (1998), pp. 3185–3191.

    Google Scholar 

  9. T Gotszalk et al. “Fabrication of multipurpose AFM/SCM/SEP microprobe with integrated piezoresistive deflection sensor and isolated conductive tip”. In: Microelectronic engineering 41 (1998), pp. 477–480.

    Google Scholar 

  10. T Gotszalk et al. “Fabrication of multipurpose piezoresistive Wheatstone bridge cantilevers with conductive microtips for electrostatic and scanning capacitance microscopy”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16.6 (1998), pp. 3948–3953.

    Google Scholar 

  11. PB Grabiec et al. “Scanning probe sharp tip formation for IC integration using mesa technique”. In: Microelectronic engineering 35.1-4 (1997), pp. 329–332.

    Google Scholar 

  12. IW Rangelow et al. “Piezoresistive SXM sensors”. In: Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 33.2 (2002), pp. 59–64.

    Google Scholar 

  13. Y Sarov et al. “Realization of cantilever arrays for parallel proximity imaging”. In: Journal of Physics: Conference Series 253 (Nov. 2010), p. 012050.

    Google Scholar 

  14. Tzv. Ivanov et al. “Quantum size aspects of the piezoresistive effect in ultra thin piezoresistors”. In: Ultramicroscopy 97.1 (2003). Proceedings of the Fourth International Conference on Scanning Probe Microscopy, Sensors and Nanostructures, pp. 377–384. issn: 0304-3991. url: http://www.sciencedirect.com/science/article/pii/S0304399103000640.

  15. EI Givargizov et al. “Whisker probes”. In: Ultramicroscopy 82.1-4 (2000), pp. 57–61.

    Google Scholar 

  16. IW Rangelow, S Skocki, and P Dumania. “Plasma etching for micromechanical sensor applications”. In: Microelectronic Engineering 23.1-4 (1994), pp. 365–368.

    Google Scholar 

  17. P Grabiec et al. “Batch fabricated scanning near field optical microscope/atomic force microscopy microprobe integrated with piezoresistive cantilever beam with highly reproducible focused ion beam micromachined aperture”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22.1 (2004), pp. 16–21.

    Google Scholar 

  18. Michael G Ruppert et al. “Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing”. In: Nanotechnology 30.8 (2019), p. 085503.

    Google Scholar 

  19. E. C. M. Disseldorp et al. “MEMS-based high speed scanning probe microscopy”. In: Review of Scientific Instruments 81.4 (2010), p. 043702.

    Google Scholar 

  20. Boon-Siang Yeo et al. “Enhancement of Raman signals with silver-coated tips”. In: Applied spectroscopy 60.10 (2006), pp. 1142–1147.

    Google Scholar 

  21. M Lanza et al. “Graphene-Coated Atomic Force Microscope Tips for Reliable Nanoscale Electrical Characterization”. In: Advanced Materials 25.10 (2013), pp. 1440–1444.

    Google Scholar 

  22. Fei Hui et al. “Graphene Coated Nanoprobes: A Review”. In: Crystals 7.9 (2017), p. 269.

    Google Scholar 

  23. Yukinori Kinoshita et al. “Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition”. In: Review of Scientific Instruments 82.11 (2011), p. 113707.

    Google Scholar 

  24. Lizhen Gao et al. “Controllable Fabrication of Au-Coated AFM Probes via a Wet-Chemistry Procedure”. In: Nanoscale research letters 13.1 (2018), pp. 1–7.

    Google Scholar 

  25. Maksymilian A Derylo, Kirstin C Morton, and Lane A Baker. “Parylene insulated probes for scanning electrochemical-atomic force microscopy”. In: Langmuir 27.22 (2011), pp. 13925–13930.

    Google Scholar 

  26. N. Abedinov et al. “Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection”. In: Journal of Vacuum Science & Technology A 19.6 (2001), pp. 2884–2888.

    Google Scholar 

  27. T. Thundat et al. “Thermal and ambient-induced deflections of scanning force microscope cantilevers”. In: Applied Physics Letters 64.21 (1994), pp. 2894–2896.

    Google Scholar 

  28. Felipe Aguilar Sandoval et al. “High Resolution Viscosity Measurement by Thermal Noise Detection”. In: Sensors 15.11 (2015), pp. 27905–27916. issn: 1424–8220. url: https://www.mdpi.com/1424-8220/15/11/27905.

  29. Christian Riesch et al. “Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing”. In: Journal of Sensors 2008 (Aug. 2008).

    Google Scholar 

  30. Boris Monchev et al. “Investigation of the sorption properties of thin Ge-S-AgI films deposited on cantilever-based gas sensor”. In: Applied Physics A: Materials Science and Processing 87 (Jan. 2007), pp. 31–36.

    Google Scholar 

  31. G. Jóźwiak et al. “The spring constant calibration of the piezoresistive cantilever based biosensor”. In: Sensors and Actuators B: Chemical 170 (2012). Eurosensors XXIV, 2010, pp. 201–206. issn: 0925-4005. url: http://www.sciencedirect.com/science/article/pii/S0925400512001219.

  32. Joan Bausells. “Piezoresistive cantilevers for nanomechanical sensing”. In: Microelectronic Engineering 145 (2015), pp. 9–20.

    Google Scholar 

  33. L. A. Pinnaduwage et al. “Detection of trinitrotoluene via deflagration on a microcantilever”. In: Journal of Applied Physics 95.10 (2004), pp. 5871–5875.

    Google Scholar 

  34. D. Filenko et al. “Chemical gas sensors based on calixarene-coated discontinuous gold films”. In: Sensors and Actuators B: Chemical 111 (Nov. 2005), pp. 264–270.

    Google Scholar 

  35. Ahmed Elmouelhi. “Genome scanning: an AFM-based DNA sequencing technique”. PhD thesis. Massachusetts Institute of Technology, 2003.

    Google Scholar 

  36. Daniel James Burns. “On single-molecule dna sequencing with atomic force microscopy using functionalized carbon nanotube probes”. PhD thesis. Massachusetts Institute of Technology, 2004.

    Google Scholar 

  37. Luca Hirt et al. “Template-Free 3D Microprinting of Metals Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodeposition”. In: Advanced Materials 28.12 (2016), pp. 2311–2315.

    Google Scholar 

  38. Fangzhou Xia* and Kamal Youcef-Toumi. “Review: Advanced Atomic Force Microscopy for Biomedical Research”. In: Biosensors 12.12 (2022), p. 1116.

    Google Scholar 

  39. André Meister et al. “FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond”. In: Nano Letters 9.6 (June 2009), pp. 2501–2507. issn: 1530–6984.

    Google Scholar 

  40. Robert C. L. N. Kramer et al. “Multiscale 3D-printing of microfluidic AFM cantilevers”. In: Lab Chip 20 (2 2020), pp. 311–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). AFM Probe Functionalization and Active Element Fabrication. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_6

Download citation

Publish with us

Policies and ethics