Skip to main content

Nanofabrication of AFM Cantilever Probes

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

This chapter delves into the nuances of nanofabrication, with a particular focus on the manufacturing of passive AFM microcantilevers. An examination of the primary nanofabrication techniques, along with the corresponding enabling technologies, will be the starting point. The process principles, such as deposition, etching, patterning, and surface modification, are discussed, especially in the context of microcantilever nanofabrication. In addition, the chapter illuminates the characterization tools typically available in nanofabrication facilities and utilized for assessing MEMS device properties. Finally, some specific details of fabricating a traditional passive AFM probe are presented including the necessary procedures for both direct and indirect methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richard P Feynman. “There’s Plenty of Room at the Bottom”. In: (1960).

    Google Scholar 

  2. R. P. Feynman. “There’s plenty of room at the bottom [data storage]”. In: Journal of Microelectromechanical Systems 1.1 (Mar. 1992), pp. 60–66. issn: 1941-0158.

    Google Scholar 

  3. Gordon E Moore et al. Cramming more components onto integrated circuits. 1965.

    Google Scholar 

  4. Serope Kalpakjian and Steven Schmid. “Manufacturing engineering and technology, 7th Ed.” In: Reprinted by permission of Pearson Education, Inc., New York, New York. (2014).

    Google Scholar 

  5. Abhijit Biswas et al. “Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects”. In: Advances in colloid and interface science 170.1–2 (2012), pp. 2–27.

    Google Scholar 

  6. Hans H Gatzen, Volker Saile, and Jürg Leuthold. MICRO AND NANO FABRICATION. Springer, 2016.

    Google Scholar 

  7. Zheng Cui. Nanofabrication: Principles, Capabilities and Limits. Springer, 2017.

    Google Scholar 

  8. William A Goddard III et al. Handbook of nanoscience, engineering, and technology. CRC press, 2012.

    Google Scholar 

  9. YU Peter and Manuel Cardona. Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media, 2010.

    Google Scholar 

  10. A Lavakumar. “Crystal structures”. In: Concepts in Physical Metallurgy. 2053–2571. Morgan Claypool Publishers, 2017, 2–1 to 2–20. isbn: 978-1-6817-4473-5.

    Google Scholar 

  11. G. Fisher, M. R. Seacrist, and R. W. Standley. “Silicon Crystal Growth and Wafer Technologies”. In: Proceedings of the IEEE 100.Special Centennial Issue (May 2012), pp. 1454–1474. issn: 1558-2256.

    Google Scholar 

  12. Z.J. Pei et al. “A grinding-based manufacturing method for silicon wafers: An experimental investigation”. In: International Journal of Machine Tools Manufacture—INT J MACH TOOL MANUF 45 (Aug. 2005), pp. 1140–1151.

    Google Scholar 

  13. Muhammad Arif, Mustafizur Rahman, and Wong Yoke San. “A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries”. In: The International Journal of Advanced Manufacturing Technology 63.5–8 (2012), pp. 481–504.

    Google Scholar 

  14. Yoshio Nishi and Robert Doering. Handbook of semiconductor manufacturing technology. CRC Press, 2007.

    Google Scholar 

  15. S. Trolier-McKinstry and P. Muralt. “Thin Film Piezoelectrics for MEMS”. In: Journal of Electroceramics 12.1 (Jan. 2004), pp. 7–17. issn: 1573-8663.

    Google Scholar 

  16. S. Trolier-McKinstry and P. Muralt. “Thin Film Piezoelectrics for MEMS”. In: Journal of Electroceramics 12.1 (Jan. 2004), pp. 7–17. issn: 1573-8663.

    Google Scholar 

  17. M Ohring. Materials Science of Thin Films Deposition and Structure. 2002.

    Google Scholar 

  18. Donald M Mattox. Handbook of physical vapor deposition (PVD) processing. William Andrew, 2010.

    Google Scholar 

  19. Hideaki Adachi and Kiyotaka Wasa. “1—Thin Films and Nanomaterials”. In: Handbook of Sputtering Technology (Second Edition). Ed. by Kiyotaka Wasa, Isaku Kanno, and Hidetoshi Kotera. Second Edition. Oxford: William Andrew Publishing, 2012, pp. 3–39. isbn: 978-1-4377-3483-6. http://www.sciencedirect.com/science/article/pii/B9781437734836000012.

  20. Wolfgang Braun and Jochen Mannhart. “Film deposition by thermal laser evaporation”. In: AIP Advances 9.8 (2019), p. 085310.

    Google Scholar 

  21. C.K. O’Sullivan and G.G. Guilbault. “Commercial quartz crystal microbalances—theory and applications”. In: Biosensors and Bioelectronics 14.8 (1999), pp. 663–670. issn: 0956-5663. http://www.sciencedirect.com/science/article/pii/S0956566399000408.

  22. Abdul Wajid. “On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions”. In: Sensors and Actuators A: Physical 63.1 (1997), pp. 41–46. issn: 0924-4247. http://www.sciencedirect.com/science/article/pii/S092442479780427X.

  23. J. E. Greene. “Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017”. In: Journal of Vacuum Science & Technology A 35.5 (2017), p. 05C204.

    Google Scholar 

  24. Francis F Chen. Introduction to plasma physics. Springer Science & Business Media, 2012.

    Google Scholar 

  25. K Ostrikov and A B Murphy. “Plasma-aided nanofabrication: where is the cutting edge?” In: Journal of Physics D: Applied Physics 40.8 (Apr. 2007), pp. 2223–2241.

    Google Scholar 

  26. Ken Ostrikov and Shuyan Xu. Plasma-aided nanofabrication: from plasma sources to nanoassembly. John Wiley & Sons, 2007.

    Book  Google Scholar 

  27. G Biasiol and L Sorba. “Molecular beam epitaxy: principles and applications”. In: Crystal growth of materials for energy production and energy-saving applications (2001), pp. 66–83.

    Google Scholar 

  28. Hans-Ulrich Krebs et al. “Pulsed laser deposition (PLD)-a versatile thin film technique”. In: Advances in Solid State Physics. Springer, 2003, pp. 505–518.

    Google Scholar 

  29. Q. M. Mehran et al. “A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components”. In: Critical Reviews in Solid State and Materials Sciences 43.2 (2018), pp. 158–175.

    Google Scholar 

  30. Andresa Baptista et al. “Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands”. In: Coatings 8.11 (2018), p. 402.

    Google Scholar 

  31. S. M. Rossnagel. “Thin film deposition with physical vapor deposition and related technologies”. In: Journal of Vacuum Science & Technology A 21.5 (2003), S74–S87.

    Google Scholar 

  32. Angus Rockett. The materials science of semiconductors. Springer Science & Business Media, 2007. Chap. Chemical Vapor Deposition.

    Google Scholar 

  33. Henrik Pedersen and Simon D Elliott. “Studying chemical vapor deposition processes with theoretical chemistry”. In: Theoretical Chemistry Accounts 133.5 (2014), p. 1476.

    Google Scholar 

  34. WERNER Kern and VLADIMIR S Ban. “Chemical vapor deposition of inorganic thin films”. In: Thin Film Processes (1978), pp. 257–331.

    Google Scholar 

  35. Richard W. Johnson, Adam Hultqvist, and Stacey F. Bent. “A brief review of atomic layer deposition: from fundamentals to applications”. In: Materials Today 17.5 (2014), pp. 236–246. issn: 1369-7021. http://www.sciencedirect.com/science/article/pii/S1369702114001436.

  36. Bikash Chandra Mallick et al. “Review-On Atomic Layer Deposition: Current Progress and Future Challenges”. In: ECS Journal of Solid State Science and Technology 8.4 (2019), N55-N78.

    Google Scholar 

  37. Donald M Mattox. “Short history of reactive evaporation”. In: SVC Bulletin, Society of Vacuum Coaters (Spring 2014) (), pp. 50–51.

    Google Scholar 

  38. Sören Berg and Tomas Nyberg. “Fundamental understanding and modeling of reactive sputtering processes”. In: Thin solid films 476.2 (2005), pp. 215–230.

    Google Scholar 

  39. Niranjan Sahu, B Parija, and S Panigrahi. “Fundamental understanding and modeling of spin coating process: A review”. In: Indian Journal of Physics 83.4 (2009), pp. 493–502.

    Google Scholar 

  40. Nga P Pham, Joachim N Burghartz, and Pasqualina M Sarro. “Spray coating of photoresist for pattern transfer on high topography surfaces”. In: Journal of Micromechanics and Microengineering 15.4 (2005), p. 691.

    Google Scholar 

  41. CJ Brinker et al. “Fundamentals of sol-gel dip coating”. In: Thin solid films 201.1 (1991), pp. 97–108.

    Google Scholar 

  42. Milan Paunovic. “Electrochemical deposition”. In: Encyclopedia of Electro-chemistry: Online (2007).

    Google Scholar 

  43. Kurt W Kolasinski. “Silicon nanostructures from electroless electrochemical etching”. In: Current Opinion in Solid State and Materials Science 9.1–2 (2005), pp. 73–83.

    Google Scholar 

  44. Kenneth E Bean. “Anisotropic etching of silicon”. In: IEEE Transactions on electron devices 25.10 (1978), pp. 1185–1193.

    Google Scholar 

  45. H Seidel et al. “Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers”. In: Journal of the electrochemical society 137.11 (1990), pp. 3612–3626.

    Google Scholar 

  46. GW Trucks et al. “Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation”. In: Physical review letters 65.4 (1990), p. 504.

    Google Scholar 

  47. Helmut Seidel. “The mechanism of anisotropic silicon etching and its relevance for micromachinings”. In: Research and Development. Technical-Scientific Publications (1956–1987): Retrospective View and Prospects. Jubilee Edition on the Occasion of the 75th Anniversary of Dipl.-Engr. Dr.-Engr. EH Ludwig Boelkow. 1987.

    Google Scholar 

  48. Wolfgang Menz, Jurgen Mohr, and Oliver Paul. Microsystem technology. John Wiley & Sons, 2008.

    Google Scholar 

  49. Werner Kern and Cheryl A Deckert. “Chemical etching”. In: Thin film processes 1 (1978).

    Google Scholar 

  50. Gregory TA Kovacs, Nadim I Maluf, and Kurt E Petersen. “Bulk micro-machining of silicon”. In: Proceedings of the IEEE 86.8 (1998), pp. 1536–1551.

    Google Scholar 

  51. Robert E Lee. “Microfabrication by ion-beam etching”. In: Journal of Vacuum Science and Technology 16.2 (1979), pp. 164–170.

    Google Scholar 

  52. E Fred Schubert. Doping in III-V semiconductors. E. Fred Schubert, 2015.

    Google Scholar 

  53. Alex Zunger. “Practical doping principles”. In: Applied Physics Letters 83.1 (2003), pp. 57–59.

    Google Scholar 

  54. Steven C Erwin et al. “Doping semiconductor nanocrystals”. In: Nature 436.7047 (2005), pp. 91–94.

    Google Scholar 

  55. Jesper Wallentin and Magnus T Borgström. “Doping of semiconductor nanowires”. In: Journal of Materials Research 26.17 (2011), pp. 2142–2156.

    Google Scholar 

  56. I Ruge and H Mader. Halbleiter-Technologie (Semiconductor technology), Vol. 4 of Halbleiter-Elektronik (Semiconductor electronics). 1988.

    Google Scholar 

  57. James F Ziegler. Ion implantation science and technology. Elsevier, 2012.

    Google Scholar 

  58. Bruce E Deal and AS Grove. “General relationship for the thermal oxidation of silicon”. In: Journal of Applied Physics 36.12 (1965), pp. 3770–3778.

    Google Scholar 

  59. Yong Chen and Anne Pepin. “Nanofabrication: Conventional and nonconventional methods”. In: Electrophoresis 22.2 (2001), pp. 187–207.

    Google Scholar 

  60. Srivastava R Ruchita and BC Yadav. “Nanolithography: processing methods for nanofabrication development”. In: Imp J Interdiscip Res 2 (2016), pp. 275–84.

    Google Scholar 

  61. Banqiu Wu and Ajay Kumar. “Extreme ultraviolet lithography: A review”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25.6 (2007), pp. 1743–1761.

    Google Scholar 

  62. J Melngailis et al. “A review of ion projection lithography”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16.3 (1998), pp. 927–957.

    Google Scholar 

  63. Helmut Schift. “Nanoimprint lithography: An old story in modern times? A review”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26.2 (2008), pp. 458–480.

    Google Scholar 

  64. Pilnam Kim et al. “Soft lithography for microfluidics: a review”. In: (2008).

    Google Scholar 

  65. F Watt et al. “Ion beam lithography and nanofabrication: a review”. In: International Journal of Nanoscience 4.03 (2005), pp. 269–286.

    Google Scholar 

  66. Alfred Wagner. “Applications of focused ion beams”. In: Nuclear Instruments and Methods in Physics Research 218.1–3 (1983), pp. 355–362.

    Google Scholar 

  67. Oliver Brand, Gary K Fedder, and Christofer Hierold. LIGA and its Applications. John Wiley & Sons, 2009.

    Google Scholar 

  68. George M Whitesides and Bartosz Grzybowski. “Self-assembly at all scales”. In: Science 295.5564 (2002), pp. 2418–2421.

    Google Scholar 

  69. Chee Meng Benjamin Ho et al. “3D printed microfluidics for biological applications”. In: Lab on a Chip 15.18 (2015), pp. 3627–3637.

    Google Scholar 

  70. Dengfeng Tan et al. “Reduction in feature size of two-photon polymerization using SCR500”. In: Applied Physics Letters 90.7 (2007), p. 071106.

    Google Scholar 

  71. Xiaoqin Zhou, Yihong Hou, and Jieqiong Lin. “A review on the processing accuracy of two-photon polymerization”. In: AIP Advances 5.3 (2015), p. 030701.

    Google Scholar 

  72. Taibur Rahman et al. “Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures”. In: Journal of Micromechanics and Microengineering 25.10 (2015), p. 107002.

    Google Scholar 

  73. Jian Geng et al. “Self-Assembled Axisymmetric Microscale Periodic Wrinkles on Elastomer Fibers”. In: Journal of Micro and Nano-Manufacturing 5.2 (2017).

    Google Scholar 

  74. Mohammad Sadeq Saleh, Chunshan Hu, and Rahul Panat. “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing”. In: Science Advances 3.3 (2017). eprint: https://advances.sciencemag.org/content/3/3/e1601986.full.pdf. https://advances.sciencemag.org/content/3/3/e1601986.

  75. John F O’Hanlon. A user’s guide to vacuum technology. John Wiley & Sons, 2005.

    Google Scholar 

  76. C Benjamin Nakhosteen and Karl Jousten. Handbook of vacuum technology. John Wiley & Sons, 2016.

    Google Scholar 

  77. W Whyte. Cleanroom Technology: Fundamentals of Design, Testing, and Operation, 2001.

    Google Scholar 

  78. Homayoun Talieh and David Edwin Weldon. Linear polisher and method for semiconductor wafer planarization. US Patent 5,692,947. Dec. 1997.

    Google Scholar 

  79. Su Jianxiu et al. “Material removal rate in chemical-mechanical polishing of wafers based on particle trajectories”. In: Journal of Semiconductors 31.5 (May 2010), p. 056002.

    Google Scholar 

  80. Su Jianxiu et al. “Material removal rate in chemical-mechanical polishing of wafers based on particle trajectories”. In: Journal of Semiconductors 31.5 (2010), p. 056002.

    Google Scholar 

  81. Ionut Radu et al. “Fundamentals of Wafer Bonding for SOI: From Physical Mechanisms Towards Advanced Modeling”. In: ECS Transactions 16.8 (2008), p. 349.

    Google Scholar 

  82. Jan A Dziuban. Bonding in microsystem technology. Vol. 24. Springer Science & Business Media, 2007.

    Google Scholar 

  83. Hocheol Kwak and Todd Hubing. “An overview of advanced electronic packaging technology”. In: Clemson University Vehicular Electronics Lab (2007).

    Google Scholar 

  84. James E Morris. “Nanopackaging: nanotechnologies and electronics packaging”. In: Nanopackaging. Springer, 2018, pp. 1–44.

    Google Scholar 

  85. Prosenjit Rai-Choudhury. Handbook of microlithography, micromachining, and microfabrication: microlithography. Vol. 1. Iet, 1997.

    Google Scholar 

  86. Fangzhou Xia. “Design and Control of Versatile High-speed and Large-range Atomic Force Microscopes”. PhD thesis. Massachusetts Institute of Technology, 2020.

    Google Scholar 

  87. Shuo Zheng. “Nanofabrication of direct positioning atomic force microscope (AFM) probes and a novel method to attain controllable lift-off”. MA thesis. University of Waterloo, 2017.

    Google Scholar 

  88. Oliver Krause. AFM Probe Manufacturing. 2016. https://www.agilent.com/cs/library/slidepresentation/Public/AFM%20Probe%20ManufacturingNanoworld_tip_technologyPRussell07.pdf (visited on 03/24/2020).

  89. J.C. Li, Y. Wang, and D.C. Ba. “Characterization of Semiconductor Surface Conductivity by Using Microscopic Four-Point Probe Technique”. In: Physics Procedia 32 (2012). The 18th International Vacuum Congress (IVC-18), pp. 347–355. issn: 1875-3892. http://www.sciencedirect.com/science/article/pii/S1875389212009856.

  90. Anja Boisen, Ole Hansen, and Siebe Bouwstra. “AFM probes with directly fabricated tips”. In: Journal of Micromechanics and Microengineering 6.1 (1996), p. 58.

    Google Scholar 

  91. Anja Boisen et al. “Indirect tip fabrication for scanning probe microscopy”. In: Microelectronic Engineering 30.1–4 (1996), pp. 579–582.

    Google Scholar 

  92. T Akiyama, U Staufer, and NF De Rooij. “Self-sensing and self-actuating probe based on quartz tuning fork combined with microfabricated cantilever for dynamic mode atomic force microscopy”. In: Applied Surface Science 210.1–2 (2003), pp. 18–21.

    Google Scholar 

  93. Michael G Ruppert et al. “Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing”. In: Nanotechnology 30.8 (2019), p. 085503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). Nanofabrication of AFM Cantilever Probes. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_5

Download citation

Publish with us

Policies and ethics