Skip to main content

Nanoscale Actuation and Active AFM Probe Design Examples

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

This chapter focuses on suitable actuation methodologies for driving AFM cantilevers, along with design examples of active AFM probes with integrated sensing and actuation elements. Similar to sensing, actuation of the cantilever probe can be achieved through both external and internal means. The primary requirement for dynamic mode operation is excitation of the cantilever resonance. Some actuation strategies can also allow control over static deflection. To conclude, the chapter showcases examples of AFM cantilever probes built using combinations of embedded self-sensing and self-actuated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazushi Yamanaka and Shizuka Nakano. “Ultrasonic atomic force micro- scope with overtone excitation of cantilever”. In: Japanese journal of applied physics 35.6S (1996), p. 3787.

    Google Scholar 

  2. Preeti Khulbe. “Nanorobots: a review”. In: IJPSR 5.6 (2014), pp. 2164–73.

    Google Scholar 

  3. Chengzhi Hu, Salvador Pane´, and Bradley J Nelson. “Soft micro-and nanorobotics”. In: Annual Review of Control, Robotics, and Autonomous Systems 1 (2018), pp. 53–75.

    Google Scholar 

  4. Jia Yang et al. “Development of micro-and nanorobotics: A review”. In: Science China Technological Sciences 62.1 (2019), pp. 1–20.

    Google Scholar 

  5. Chaoyang Shi et al. “Recent advances in nanorobotic manipulation inside scanning electron microscopes”. In: Microsystems & nanoengineering 2 (2016), p. 16024.

    Google Scholar 

  6. TR Kane, R Ryan, and AK Banerjee. “Dynamics of a cantilever beam attached to a moving base”. In: Journal of Guidance, Control, and Dynamics 10.2 (1987), pp. 139–151.

    Google Scholar 

  7. GR Jayanth, Sissy M Jhiang, and Chia-Hsiang Menq. “Two-axis probing system for atomic force microscopy”. In: Review of Scientific Instruments 79.2 (2008), p. 023705.

    Google Scholar 

  8. Byeonghee Lee, Craig B Prater, and William P King. “Lorentz force actu- ation of a heated atomic force microscope cantilever”. In: Nanotechnology 23.5 (2012), p. 055709.

    Google Scholar 

  9. Harish Bhaskaran et al. “Active microcantilevers based on piezoresistive ferromagnetic thin films”. In: Applied Physics Letters 98.1 (2011), p. 013502.

    Google Scholar 

  10. Daniel Kopiec et al. “Electromagnetically actuated microcantilever for chemical and biochemical sensing in static mode”. In: Procedia Engineering 87 (2014), pp. 955–958.

    Google Scholar 

  11. Suhas Somnath et al. “Multifunctional atomic force microscope cantilevers with Lorentz force actuation and self-heating capability”. In: Nanotechnology 25.39 (2014), p. 395501.

    Google Scholar 

  12. A Buguin, O Du Roure, and P Silberzan. “Active atomic force microscopy cantilevers for imaging in liquids”. In: Applied Physics Letters 78.19 (2001), pp. 2982–2984.

    Google Scholar 

  13. Paolo Di Barba et al. “Optimal design of electromagnetically actuated MEMS cantilevers”. In: Sensors 18.8 (2018), p. 2533.

    Google Scholar 

  14. Nitya Nand Gosvami et al. “Direct torsional actuation of microcantilevers using magnetic excitation”. In: Applied Physics Letters 105.9 (2014), p. 093101.

    Google Scholar 

  15. Elena T Herruzo and Ricardo Garcia. “Frequency response of an atomic force microscope in liquids and air: Magnetic versus acoustic excitation”. In: Applied Physics Letters 91.14 (2007), p. 143113.

    Google Scholar 

  16. Christian J Long and Rachel J Cannara. “Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers”. In: Review of Scientific Instruments 86.7 (2015), p. 073703.

    Google Scholar 

  17. Benoit XE Desbiolles et al. “Electrostatically actuated encased cantilevers”. In: Beilstein Journal of Nanotechnology 9.1 (2018), pp. 1381–1389.

    Google Scholar 

  18. Ken-ichi Umeda et al. “High-resolution frequency-modulation atomic force microscopy in liquids using electrostatic excitation method”. In: Applied Physics Express 3.6 (2010), p. 065205.

    Google Scholar 

  19. Stephen Timoshenko. “Analysis of bi-metal thermostats”. In: Josa 11.3 (1925), pp. 233–255.

    Google Scholar 

  20. Nickolay V Lavrik, Michael J Sepaniak, and Panos G Datskos. “Cantilever transducers as a platform for chemical and biological sensors”. In: Review of scientific instruments 75.7 (2004), pp. 2229–2253.

    Google Scholar 

  21. Zhiyu Hu, T Thundat, and RJ Warmack. “Investigation of adsorption and absorption-induced stresses using microcantilever sensors”. In: Journal of Applied Physics 90.1 (2001), pp. 427–431.

    Google Scholar 

  22. N Umeda, S Ishizaki, and H Uwai. “Scanning attractive force microscope using photothermal vibration”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 9.2 (1991), pp. 1318–1322.

    Google Scholar 

  23. Natsumi Inada et al. “Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer”. In: Beilstein journal of nanotechnology 7.1 (2016), pp. 409–417.

    Google Scholar 

  24. D Ramos et al. “Photothermal excitation of microcantilevers in liquids”. In: Journal of applied physics 99.12 (2006), p. 124904.

    Google Scholar 

  25. Benjamin Andreas Bircher et al. “Photothermal excitation of microcantilevers in liquid: effect of the excitation laser position on temperature and vibrational amplitude”. In: Micro & Nano Letters 8.11 (2013), pp. 770–774.

    Google Scholar 

  26. Y Sarov et al. “Thermally driven multi-layer actuator for 2D cantilever arrays”. In: Applied Physics A 102.1 (2011), pp. 61–68.

    Google Scholar 

  27. W Majstrzyk et al. “Thermomechanically and electromagnetically actuated piezoresistive cantilevers for fast-scanning probe microscopy investigations”. In: Sensors and Actuators A: Physical 276 (2018), pp. 237–245.

    Google Scholar 

  28. Alissa Potekhina and Changhai Wang. “Review of Electrothermal Actuators and Applications”. In: Actuators. Vol. 8. 4. Multidisciplinary Digital Publishing Institute. 2019, p. 69.

    Google Scholar 

  29. P-F Indermu¨hle et al. “Fabrication and characterization of cantilevers with integrated sharp tips and piezoelectric elements for actuation and detection for parallel AFM applications”. In: Sensors and Actuators A: Physical 60.1–3 (1997), pp. 186–190.

    Google Scholar 

  30. Bernard Ouma Alunda and Yong Joong Lee. “Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy”. eng. In: Sensors (Basel, Switzerland) 20.17 (Aug. 2020). s20174784[PII], p. 4784. issn: 1424-8220.

    Google Scholar 

  31. Fangzhou Xia et al. “A modular low-cost atomic force microscope for precision mechatronics education”. In: Mechatronics 76 (2021), p. 102550.

    Google Scholar 

  32. Fangzhou Xia et al. “Physical Intelligence in the Metaverse: Mixed Reality Scale Models for Twistronics and Atomic Force Microscopy”. In: 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2022, pp. 1722–1729.

    Google Scholar 

  33. J-M Friedt and E Carry. “Introduction to the quartz tuning fork”. In: American Journal of Physics 75.5 (2007), pp. 415–422.

    Google Scholar 

  34. Robert D Grober et al. “Fundamental limits to force detection using quartz tuning forks”. In: Review of Scientific Instruments 71.7 (2000), pp. 2776–2780.

    Google Scholar 

  35. Franz J Giessibl. “The qPlus sensor, a powerful core for the atomic force microscope”. In: Review of Scientific Instruments 90.1 (2019), p. 011101.

    Google Scholar 

  36. Franz J Giessibl. “Principles and Applications of the qPlus Sensor”. In: Noncontact atomic force microscopy. Springer, 2009, pp. 121–142.

    Google Scholar 

  37. Yexian Qin and R Reifenberger. “Calibrating a tuning fork for use as a scanning probe microscope force sensor”. In: Review of scientific instruments 78.6 (2007), p. 063704.

    Google Scholar 

  38. Dara Bayat et al. “Dynamic behavior of the tuning fork AFM probe”. In: Microelectronic Engineering 85.5–6 (2008), pp. 1018–1021.

    Google Scholar 

  39. Zhichao Wu et al. “A unique self-sensing, self-actuating AFM probe at higher eigenmodes”. In: Sensors 15.11 (2015), pp. 28764–28771.

    Google Scholar 

  40. Stephan Stucklin et al. “Atomic force microscopy for industry with the akiyama-probe sensor”. In: 2008 International Conference on Nanoscience and Nanotechnology. IEEE. 2008, pp. 79–82.

    Google Scholar 

  41. Longlong Wang et al. “Simulation and signal analysis of Akiyama probe applied to atomic force microscope”. In: Sixth International Symposium on Precision Mechanical Measurements. Vol. 8916. International Society for Optics and Photonics. 2013, 89160W.

    Google Scholar 

  42. Terunobu Akiyama et al. “Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy”. In: Review of Scientific Instruments 81.6 (2010), p. 063706.

    Google Scholar 

  43. Takayuki Shibata et al. “Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe”. In: Sensors and Actuators A: Physical 102.1–2 (2002), pp. 106–113.

    Google Scholar 

  44. P-F Inderm¨uhle et al. “Fabrication and characterization of cantilevers with integrated sharp tips and piezoelectric elements for actuation and detection for parallel AFM applications”. In: Sensors and Actuators A: Physical 60.1–3 (1997), pp. 186–190.

    Google Scholar 

  45. Michael G Ruppert et al. “Multimodal atomic force microscopy with op- timized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing”. In: Nanotechnology 30.8 (2019), p. 085503.

    Google Scholar 

  46. Michael G Ruppert and SO Reza Moheimani. “High-bandwidth multimode self-sensing in bimodal atomic force microscopy”. In: Beilstein journal of nanotechnology 7.1 (2016), pp. 284–295.

    Google Scholar 

  47. JE-Y Lee and AA Seshia. “Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators”. In: Sensors and Actuators A: Physical 156.1 (2009), pp. 36–42.

    Google Scholar 

  48. M Bulut Coskun et al. “On-chip feedthrough cancellation methods for microfabricated AFM cantilevers with integrated piezoelectric transducers”. In: Journal of Microelectromechanical Systems 26.6 (2017), pp. 1287–1297.

    Google Scholar 

  49. AT-H Lin et al. “Methods for enhanced electrical transduction and characterization of micromechanical resonators”. In: Sensors and Actuators A: Physical 158.2 (2010), pp. 263–272.

    Google Scholar 

  50. Fangzhou Xia et al. “Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes”. In: Nanomaterials 9.7 (2019), p. 1013.

    Google Scholar 

  51. R Pedrak et al. “Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 21.6 (2003), pp. 3102–3107.

    Google Scholar 

  52. Tzv Ivanov et al. “Thermally driven micromechanical beam with piezoresistive deflection readout”. In: Microelectronic engineering 67 (2003), pp. 550–556.

    Google Scholar 

  53. R. Linnemann et al. “Characterization of a cantilever with an integrated deflection sensor”. In: Thin Solid Films 264.2 (1995), pp. 159–164. issn: 0040-6090. http://www.sciencedirect.com/science/article/pii/0040609094058296.

  54. Y Sarov et al. “Controllable off-plane deflection of cantilevers for multiple scanning proximity probe arrays”. In: Applied Physics A 92.3 (2008), pp. 525–530.

    Google Scholar 

  55. Thomas Michels and Ivo W. Rangelow. “Review of scanning probe micromachining and its applications within nanoscience”. In: Microelectronic Engineering 126 (2014), pp. 191–203. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S0167931714000434.

  56. Ivo W Rangelow et al. “Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication”. In: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35.6 (2017), 06G101.

    Google Scholar 

  57. M. G. Ruppert et al. “On-Chip Dynamic Mode Atomic Force Microscopy: A Silicon-on-Insulator MEMS Approach”. In: Journal of Microelectromechanical Systems 26.1 (Feb. 2017), pp. 215–225.

    Google Scholar 

  58. Ali Mohammadi et al. “A feedback controlled MEMS nanopositioner for on-chip high-speed AFM”. In: Journal of Microelectromechanical Systems 23.3 (2013), pp. 610–619.

    Google Scholar 

  59. AG Fowler et al. “A 2-DOF electrostatically actuated MEMS nanopositioner for on-chip AFM”. In: Journal of Microelectromechanical Systems 21.4 (2012), pp. 771–773.

    Google Scholar 

  60. N. Sarkar et al. “CMOS-MEMS atomic force microscope”. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. 2011, pp. 2610–2613.

    Google Scholar 

  61. N. Sarkar, G. Lee, and R. R. Mansour. “CMOS-MEMS dynamic FM atomic force microscope”. In: 2013 Transducers Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS EUROSENSORS XXVII). 2013, pp. 916–919.

    Google Scholar 

  62. S. C. Minne et al. “Automated parallel high-speed atomic force microscopy”. In: Applied Physics Letters 72.18 (1998), pp. 2340–2342.

    Google Scholar 

  63. M. G. Ruppert and Y. K. Yong. “Design of Hybrid Piezoelectric/Piezoresistive Cantilevers for Dynamic-mode Atomic Force Microscopy”. In: IEEE/ASME Advanced Intelligent Mechatronics (AIM). Auckland, New Zealand, July 9, 2018. published.

    Google Scholar 

  64. Michael G. Ruppert, Andrew J. Fleming, and Yuen K. Yong. “Active atomic force microscope cantilevers with integrated device layer piezoresistive sensors”. In: Sensors and Actuators A: Physical 319 (2021), p. 112519. issn: 0924-4247. https://www.sciencedirect.com/science/article/pii/S0924424720318343.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). Nanoscale Actuation and Active AFM Probe Design Examples. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_4

Download citation

Publish with us

Policies and ethics