Skip to main content

Nanoscale Force and Displacement Sensing

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

This chapter presents a comprehensive introduction to sensor systems, with particular emphasis on force and displacement measurements at the nanoscale. Beginning with a broader perspective, we explore sensor design as transducers to convert signals in various energy domains, gradually refining our focus to elaborate on nanoscale motion and force measurement. Specifically, we delve into the principles common to atomic force microscope (AFM) systems used for nanoscale positioning and cantilever probe deflection measurement. The chapter is structured to facilitate understanding of performance characteristics, enabling the reader to make informed choices for application-specific sensor selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dan Mihai Stefanescu. Handbook of force transducers: principles and components. Springer Science & Business Media, 2011.

    Google Scholar 

  2. Andrew J. Fleming. “A review of nanometer resolution position sensors: Operation and performance”. In: Sensors and Actuators A: Physical 190 (2013), pp. 106–126. issn: 0924-4247. http://www.sciencedirect.com/science/article/pii/S0924424712006267.

  3. Haoyan Zang et al. “Recent advances in non-contact force sensors used for micro/nano manipulation”. In: Sensors and Actuators A: Physical 296 (2019), pp. 155–177. issn: 0924-4247. http://www.sciencedirect.com/science/article/pii/S0924424719307472.

  4. Gabriele D’Antona and Alessandro Ferrero. Digital signal processing for measurement systems: theory and applications. Springer Science & Business Media, 2005.

    Google Scholar 

  5. ISO ISO. “5725: 1994, Accuracy (trueness and precision) of measurement methods and results”. In: International Organization for Standardization, Geneva (1994).

    Google Scholar 

  6. J. Lubliner and P. Papadopoulos. Introduction to Solid Mechanics: An Integrated Approach. Springer International Publishing, 2016. isbn: 978-3-3191-8878-2. https://books.google.com/books?id=fhJADQAAQBAJ.

    Google Scholar 

  7. Allan F Bower. Applied mechanics of solids. CRC press, 2009.

    Google Scholar 

  8. Karl Hoffmann. Applying the Wheatstone bridge circuit. HBM Germany, 1974.

    Google Scholar 

  9. Zhao Jing, Zhang Guang-Yu, and Shi Dong-Xia. “Review of graphene-based strain sensors”. In: Chinese Physics B 22.5 (2013), p. 057701.

    Google Scholar 

  10. Waris Obitayo and Tao Liu. “A review: Carbon nanotube-based piezoresistive strain sensors”. In: Journal of Sensors 2012 (2012).

    Google Scholar 

  11. AA Barlian et al. “Review: Semiconductor Piezoresistance for Microsystems 2009”. In: Proc. of the IEEE 97.3 ().

    Google Scholar 

  12. S. Muntwyler et al. “Monolithically Integrated Two-Axis Microtensile Tester for the Mechanical Characterization of Microscopic Samples”. In: Journal of Microelectromechanical Systems 19.5 (2010), pp. 1223–1233.

    Google Scholar 

  13. SO Reza Moheimani and Andrew J Fleming. Piezoelectric transducers for vibration control and damping. Springer Science & Business Media, 2006.

    Google Scholar 

  14. Mariana Amorim Fraga et al. “Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview”. In: Microsystem technologies 20.1 (2014), pp. 9–21.

    Google Scholar 

  15. Yong Zhu, SOR Moheimani, and MR Yuce. “Simultaneous capacitive and electrothermal position sensing in a micromachined nanopositioner”. In: IEEE Electron Device Letters 32.8 (2011), pp. 1146–1148.

    Google Scholar 

  16. Ali Mohammadi, Mehmet R Yuce, and SO Reza Moheimani. “A low-flicker-noise MEMS electrothermal displacement sensing technique”. In: Journal of Microelectromechanical Systems 21.6 (2012), pp. 1279–1281.

    Google Scholar 

  17. Mark A Lantz et al. “A micromechanical thermal displacement sensor with nanometre resolution”. In: Nanotechnology 16.8 (2005), p. 1089.

    Google Scholar 

  18. A. Bazaei and S. O. R. Moheimani. “A Comprehensive Analysis of MEMS Electrothermal Displacement Sensors”. In: IEEE Sensors Journal 14.9 (Sept. 2014), pp. 3183–3192.

    Google Scholar 

  19. Busara Piriyanont and SO Reza Moheimani. “MEMS rotary microgripper with integrated electrothermal force sensor”. In: Journal of Microelectromechanical Systems 23.6 (2014), pp. 1249–1251.

    Google Scholar 

  20. Venkataraman Kartik et al. “High-bandwidth nanopositioner with magne-toresistance based position sensing”. In: Mechatronics 22.3 (2012). Special Issue on Mechatronic Systems for Micro- and Nanoscale Applications, pp. 295–301. issn: 0957-4158. http://www.sciencedirect.com/science/article/pii/S0957415811001176.

  21. Steven D Roach. “Designing and building an eddy current position sensor”. In: Sensors-the Journal of Applied Sensing Technology 15.9 (1998), pp. 56–74.

    Google Scholar 

  22. Franz J Dutz et al. “Fabrication of locally micro-structured fiber Bragg gratings by fs-laser machining”. In: Applied Physics A 124.6 (2018), p. 426.

    Google Scholar 

  23. Tao Chen et al. “Design and fabrication of a four-arm-structure MEMS gripper”. In: IEEE Transactions on Industrial Electronics 56.4 (2008), pp. 996–1004.

    Google Scholar 

  24. Busara Piriyanont, Anthony George Fowler, and SO Reza Moheimani. “Force-controlled MEMS rotary microgripper”. In: Journal of Microelectromechanical Systems 24.4 (2015), pp. 1164–1172.

    Google Scholar 

  25. Weihai Chen et al. “A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling”. In: Review of Scientific instruments 84.11 (2013), p. 115111.

    Google Scholar 

  26. Mohammad Maroufi, Ali Bazaei, and SO Reza Moheimani. “A high-bandwidth MEMS nanopositioner for on-chip AFM: Design, characterization, and control”. In: IEEE Transactions on Control Systems Technology 23.2 (2014), pp. 504–512.

    Google Scholar 

  27. Yong Zhu et al. “Design, modeling, and control of a micromachined nanopo-sitioner with integrated electrothermal actuation and sensing”. In: Journal of Microelectromechanical Systems 20.3 (2011), pp. 711–719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). Nanoscale Force and Displacement Sensing. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_2

Download citation

Publish with us

Policies and ethics