Skip to main content

Active Probe AFM Imaging and Nanofabrication

  • Chapter
  • First Online:
Active Probe Atomic Force Microscopy

Abstract

This chapter introduces the applications of active cantilever probes for imaging and nanofabrication in AFM systems. Initially, an overview of the system integration procedure for developing active probe AFMs is provided, along with a comparison to passive probe systems. Subsequently, the imaging functionalities of these systems are demonstrated through application examples, emphasizing the new capabilities enabled by active probes. Finally, nanofabrication techniques developed based on active probe AFMs are discussed. Notably, most of the results presented in this chapter are derived from previously published research. For the sake of brevity, a principle-level discussion is provided, and interested readers are recommended to refer to the cited references for full details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fangzhou Xia. “Design and Control of Versatile High-speed and Large-range Atomic Force Microscopes”. PhD thesis. Massachusetts Institute of Technology, 2020.

    Google Scholar 

  2. Michael G Ruppert et al. “Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing”. In: Nanotechnology 30.8 (Jan. 2019), p. 085503.

    Google Scholar 

  3. Grzegorz Jóźwiak et al. “Low Frequency Measurements Using Piezoresistive Cantilever MEMS Devices—The Problem of Thermal Drift”. In: Procedia Engineering 87 (2014). EUROSENSORS 2014, the 28th European Conference on Solid-State Transducers, pp. 1259–1262. issn: 1877-7058. http://www.sciencedirect.com/science/article/pii/S1877705814025296.

  4. P. Biczysko et al. “Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode”. In: Ultramicroscopy 184 (Sept. 2017).

    Google Scholar 

  5. Andrzej Sierakowski et al. “Dynamic method of calibration and examination piezoresistive cantilevers”. In: Electron Technology Conference 2013. Ed. by Pawel Szczepanski, Ryszard Kisiel, and Ryszard S. Romaniuk. Vol. 8902. International Society for Optics and Photonics. SPIE, 2013, pp. 498–505.

    Chapter  Google Scholar 

  6. Christian Dipl.-Ing et al. “Development of a force displacement measurement device for the determination of spring constants”. In: Shaping the Future by Engineering: Proceedings ; 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 8–12 September 2014 58, 2014 (Nov. 2014), Art. 1.2.14.

    Google Scholar 

  7. Ivo W. Rangelow et al. “Pattern-generation and pattern-transfer for single-digit nano devices”. In: Journal of Vacuum Science & Technology B 34.6 (2016), 06K202. issn: 2166-2746.

    Google Scholar 

  8. Jaqueline Stauffenberg et al. “Nanopositioning and -fabrication using the Nano Fabrication Machine with a positioning range up to \({\O }\) 100 mm”. In: Novel Patterning Technologies 2021. Ed. by Eric M. Panning. Vol. 11610. International Society for Optics and Photonics. SPIE, 2021, p. 1161016.

    Google Scholar 

  9. Jaqueline Stauffenberg et al. “Measurement Precision of a Planar Nanopositioning Machine with a Range of Motion of Oslash;100 mm”. In: Applied Sciences 12.15 (2022). issn: 2076-3417. https://www.mdpi.com/2076-3417/12/15/7843.

  10. R. Linnemann et al. “Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14.2 (1996), pp. 856–860.

    Google Scholar 

  11. Teodor Gotszalk et al. “Lateral force microscopy using cantilevers with integrated Wheatstone bridge piezoresistive deflection sensor”. In: Microlithography and Metrology in Micromachining II. Ed. by Michael T. Postek Jr. and Craig R. Friedrich. Vol. 2880. International Society for Optics and Photonics. SPIE, 1996, pp. 256–263.

    Google Scholar 

  12. Teodor Gotszalk, PB Grabiec, and IW Rangelow. “A novel piezoresistive microprobe for atomic and lateral force microscopy”. In: Sensors and Actuators A: Physical 123 (2005), pp. 370–378.

    Google Scholar 

  13. PB Grabiec et al. “A design and fabrication of a 3D force sensitive microprobe for surface characterization”. In: Microelectronic engineering 46.1–4 (1999), pp. 405–408.

    Google Scholar 

  14. Qingqing Yang et al. “Array atomic force microscopy for real-time multiparametric analysis”. In: Proceedings of the National Academy of Sciences 116.13 (2019), pp. 5872–5877. issn: 0027-8424. eprint: https://www.pnas.org/content/116/13/5872.full.pdf. https://www.pnas.org/content/116/13/5872.

  15. Wenhan Cao et al. “Massively parallel cantilever-free atomic force microscopy”. In: Nature Communications 12.1 (Jan. 2021), p. 393. issn: 2041-1723.

    Google Scholar 

  16. P. Vettiger et al. “The “Millipede”—More than thousand tips for future AFM storage”. In: IBM Journal of Research and Development 44.3 (2000), pp. 323–340.

    Google Scholar 

  17. Suhas Somnath et al. “Parallel nanoimaging and nanolithography using a heated microcantilever array”. In: Nanotechnology 25.1 (2013), p. 014001.

    Google Scholar 

  18. I.W. Rangelow et al. “Piezoresistive and self-actuated 128-cantilever arrays for nanotechnology applications”. In: Microelectronic Engineering 84.5 (2007). Proceedings of the 32nd International Conference on Micro-and Nano-Engineering, pp. 1260–1264. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S016793170700144X.

  19. A Frank et al. “Parallel cantilever systems for scanning and analysis”. In: Sensoren und Messsysteme. May 19, 2010.

    Google Scholar 

  20. Y Sarov et al. “Controllable off-plane deflection of cantilevers for multiple scanning proximity probe arrays”. In: Applied Physics A 92.3 (2008), pp. 525–530.

    Google Scholar 

  21. Ahmad Ahmad et al. “Large area fast-AFM scanning with active “Quattro” cantilever arrays”. In: Journal of Vacuum Science & Technology B 34.6 (2016), 06KM03.

    Google Scholar 

  22. M Holz et al. “High throughput AFM inspection system with parallel active cantilevers”. In: Photomask Technology 2019. Vol. 11148. International Society for Optics and Photonics. 2019, 111481E.

    Google Scholar 

  23. Fangzhou Xia et al. “Active Probe Atomic Force Microscopy with Quattro-Parallel Cantilever Arrays for High-Throughput Large-Scale Sample Inspection”. In: JoVE (), e65210. issn: 1940-087X.

    Google Scholar 

  24. Jaqueline Stauffenberg et al. “Investigations on the positioning accuracy of the Nano Fabrication Machine (NFM-100)”. In: tm-Technisches Messen 88.9 (2021), pp. 581–589.

    Google Scholar 

  25. Teodor Gotszalk, Tzvetan Ivanov, and Ivo W. Rangelow. “Parallel SPM cantilever arrays for large area surface metrology and lithography”. In: Metrology, Inspection, and Process Control for Microlithography XXVIII. Ed. by Jason P. Cain and Martha I. Sanchez. Vol. 9050. International Society for Optics and Photonics. SPIE, 2014, pp. 274–282.

    Google Scholar 

  26. Chang Liu. “Parallel scanning probe arrays: their applications”. In: Materials Today 11 (2008), pp. 22–29. issn: 1369-7021. http://www.sciencedirect.com/science/article/pii/S1369702109700045.

  27. S. C. Minne et al. “Centimeter scale atomic force microscope imaging and lithography”. In: Applied Physics Letters 73.12 (1998), pp. 1742–1744.

    Google Scholar 

  28. Mathias Holz et al. “Correlative Microscopy and Nanofabrication with AFM Integrated with SEM”. In: Microscopy Today 27.6 (2019), pp. 24–30.

    Google Scholar 

  29. Tihomir Angelov et al. “Six-axis AFM in SEM with self-sensing and self-transduced cantilever for high speed analysis and nanolithography”. In: Journal of Vacuum Science & Technology B 34.6 (2016), 06KB01.

    Google Scholar 

  30. nano Analytik GmbH. AFMinSEM: Ultra compact UHV-AFM for usage with active cantilevers. 2019. https://www.nanoanalytik.net/products/systems/afm-in-sem/ (visited on 04/22/2020).

  31. Ivo W. Rangelow et al. “Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy”. In: Journal of Vacuum Science & Technology B 36.6 (2018), 06J102.

    Google Scholar 

  32. W. Barth et al. “Evaluation and fabrication of AFM array for ESA-Midas/Rosetta space mission”. In: Microelectronic Engineering 57-58 (2001). Micro-and Nano-Engineering 2000, pp. 825–831. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S0167931701005585.

  33. Fangzhou Xia et al. “Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes”. In: Nanomaterials 9.7 (2019), p. 1013.

    Google Scholar 

  34. GE Fantner et al. “Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid”. In: Nanotechnology 20.43 (2009), p. 434003.

    Google Scholar 

  35. Andreas Schuh et al. “Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy”. In: Nanotechnology 26.23 (May 2015), p. 235706.

    Google Scholar 

  36. A. Schuh et al. “Estimator based multi-eigenmode control of cantilevers in multifrequency Atomic Force Microscopy”. In: 2015 American Control Conference (ACC). July 2015, pp. 1905–1910.

    Google Scholar 

  37. A. Schuh et al. “Active Microcantilevers for High Material Contrast in Harmonic Atomic Force Microscopy”. In: Journal of Microelectromechanical Systems 24.5 (Oct. 2015), pp. 1622–1631. issn: 1941-0158.

    Google Scholar 

  38. Miros law Woszczyna et al. “Micromachined scanning proximal probes with integrated piezoresistive readout and bimetal actuator for high eigenmode operation”. In: Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures 28 (Nov. 2010), C6N12–C6N17.

    Google Scholar 

  39. R Pedrak et al. “Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 21.6 (2003), pp. 3102–3107.

    Google Scholar 

  40. S. I. Moore, M. G. Ruppert, and Y. K. Yong. “AFM Cantilever Design for Multimode Q Control: Arbitrary Placement of Higher-Order Modes”. In: IEEE/ASME Transactions on Mechatronics (Feb. 21, 2020). Early Access, pp. 1–6. https://ieeexplore.ieee.org/document/9006926. published.

  41. P. Grabiec et al. “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”. In: Microelectronic Engineering 61–62 (2002). Micro-and Nano-Engineering 2001, pp. 981–986. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S0167931702004288.

  42. Le Wang and Xiaoji G. Xu. “Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction”. In: Nature Communications 6.1 (Nov. 2015), p. 8973. issn: 2041-1723.

    Google Scholar 

  43. I.W. Rangelow et al. “Thermal nano-probe”. In: Microelectronic Engineering 57-58 (2001). Micro-and Nano-Engineering 2000, pp. 737–748. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S016793170100466X.

  44. K. Edinger, T. Gotszalk, and I. W. Rangelow. “Novel high resolution scanning thermal probe”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 19.6 (2001), pp. 2856–2860.

    Google Scholar 

  45. Mojtaba Joodaki et al. “Application of a Scanning Thermal Nano-Probe for Thermal Imaging of High Frequency Active devices”. In: Japanese Journal of Applied Physics 44.9A (Sept. 2005), pp. 6823–6825.

    Google Scholar 

  46. Mojtaba Joodaki et al. “Thermal imaging of microwave power GaAs-FET with scanning thermal nanoprobe”. In: Nanoscale Optics and Applications. Ed. by Guozhong Cao and Wiley P. Kirk. Vol. 4809. International Society for Optics and Photonics. SPIE, 2002, pp. 202–207.

    Google Scholar 

  47. Pawe l Janus et al. “Design, technology, and application of integrated piezoresistive scanning thermal microscopy (SThM) microcantilever”. In: Scanning Microscopies 2014. Ed. by Michael T. Postek et al. Vol. 9236. International Society for Optics and Photonics. SPIE, 2014, pp. 154–164.

    Google Scholar 

  48. Manuel Hofer et al. “Fabrication of self-actuated piezoresistive thermal probes”. In: Microelectronic Engineering 145 (2015), pp. 32–37.

    Google Scholar 

  49. Manuel Hofer et al. “Fabrication of self-actuated piezoresistive thermal probes”. In: Microelectronic Engineering 145 (2015), pp. 32–37.

    Google Scholar 

  50. Teodor Gotszalk, Piotr Grabiec, and Ivo W. Rangelow. “Piezoresistive sensors for scanning probe microscopy”. In: Ultramicroscopy 82.1 (2000), pp. 39–48. issn: 0304-3991. http://www.sciencedirect.com/science/article/pii/S0304399199001710.

  51. Ivo W. Rangelow et al. “Review Article: Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication”. In: Journal of Vacuum Science & Technology B 35.6 (2017), 06G101.

    Google Scholar 

  52. Terunobu Akiyama et al. “Scanning probe with tuning fork sensor, micro-fabricated silicon cantilever and conductive tip for microscopy at cryogenic temperature”. In: Japanese journal of applied physics 45.3S (2006), p. 1992.

    Google Scholar 

  53. T Akiyama et al. “Novel Dynamic Scanning Microscope Probe and its Application to Local Electrical Measurement in an Ion Sensitive Field Effect Transistor”. In: MRS Online Proceedings Library Archive 838 (2004).

    Google Scholar 

  54. Oscar Custance, Ruben Perez, and Seizo Morita. “Atomic force microscopy as a tool for atom manipulation”. In: Nature nanotechnology 4.12 (2009), p. 803.

    Google Scholar 

  55. Yoshiaki Sugimoto et al. “Atom inlays performed at room temperature using atomic force microscopy”. In: Nature materials 4.2 (2005), pp. 156–159.

    Google Scholar 

  56. Shuai Yuan et al. AFM-Based Observation and Robotic Nano-manipulation.

    Google Scholar 

  57. K. el Rifai, O. el Rifai, and K. Youcef-Toumi. “Modeling and Control of AFM-based Nano-manipulation Systems”. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Apr. 2005, pp. 157–162.

    Google Scholar 

  58. Marcus Kaestner et al. “Scanning probes in nanostructure fabrication”. In: Journal of Vacuum Science & Technology B 32.6 (2014), 06F101.

    Google Scholar 

  59. Ivo Rangelow. “Scanning proximity probes for nanoscience and nanofabrication”. In: Microelectronic Engineering 83 (Apr. 2006), pp. 1449–1455.

    Google Scholar 

  60. Ampere A Tseng, Andrea Notargiacomo, and TP Chen. “Nanofabrication by scanning probe microscope lithography: A review”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 23.3 (2005), pp. 877–894.

    Google Scholar 

  61. Thomas Michels and Ivo W. Rangelow. “Review of scanning probe micromachining and its applications within nanoscience”. In: Microelectronic Engineering 126 (2014), pp. 191–203. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S0167931714000434.

  62. Philip D Prewett et al. “Charged particle single nanometre manufacturing”. In: Beilstein journal of nanotechnology 9.1 (2018), pp. 2855–2882.

    Google Scholar 

  63. Marcus Kaestner et al. “Advanced electric-field scanning probe lithography on molecular resist using active cantilever”. In: Alternative Lithographic Technologies VII. Ed. by Douglas J. Resnick and Christopher Bencher. Vol. 9423. International Society for Optics and Photonics. SPIE, 2015, pp. 63–78.

    Google Scholar 

  64. Ivo Rangelow et al. “Single nano-digit and closed-loop scanning probe lithography for manufacturing of electronic and optical nanodevices”. In: Jan. 2018, p. 66.

    Google Scholar 

  65. K. Ivanova et al. “Scanning proximal probes for parallel imaging and lithography”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26.6 (2008), pp. 2367–2373.

    Google Scholar 

  66. Nataliya Vorbringer-Doroshovets et al. “0.1-nanometer resolution positioning stage for sub-10 nm scanning probe lithography”. In: Alternative Lithographic Technologies V. Ed. by William M. Tong. Vol. 8680. International Society for Optics and Photonics. SPIE, 2013, pp. 249–258.

    Google Scholar 

  67. Claudia Lenk (geb. Hamann) et al. “Experimental study of field emission from ultrasharp silicon, diamond, GaN, and tungsten tips in close proximity to the counter electrode”. In: Journal of Vacuum Science Technology B 36 (Nov. 2018), 06JL03.

    Google Scholar 

  68. Claudia Lenk et al. “Sharp GaN nanowires used as field emitter on active cantilevers for scanning probe lithography”. In: Journal of Vacuum Science & Technology B 36.6 (2018), 06JL04.

    Google Scholar 

  69. M Kaestner and IW Rangelow. “Multi-step scanning probe lithography (SPL) on calixarene with overlay alignment”. In: Alternative Lithographic Technologies IV. Vol. 8323. International Society for Optics and Photonics. 2012, 83231G.

    Google Scholar 

  70. Marcus Kaestner and Ivo W. Rangelow. “Scanning proximal probe lithography for sub-10 nm resolution on calix[4]resorcinarene”. In: Journal of Vacuum Science & Technology B 29.6 (2011), 06FD02.

    Google Scholar 

  71. M Kaestner and IW Rangelow. “Scanning probe nanolithography on calixarene”. In: Microelectronic engineering 97 (2012), pp. 96–99.

    Google Scholar 

  72. Zahid Durrani et al. “Scanning probe lithography for electronics at the 5nm scale”. In: SPIE Newsroom (Feb. 2013).

    Google Scholar 

  73. Zahid Durrani et al. “Scanning probe lithography approach for beyond CMOS devices”. In: Alternative Lithographic Technologies V. Ed. by William M. Tong. Vol. 8680. International Society for Optics and Photonics. SPIE, 2013, pp. 237–248.

    Google Scholar 

  74. Zahid Durrani et al. “Room-temperature single dopant atom quantum dot transistors in silicon, formed by field-emission scanning probe lithography”. In: Journal of Applied Physics 124.14 (2018), p. 144502.

    Google Scholar 

  75. Ivo W. Rangelow et al. “Field-emission scanning probe lithography with self-actuating and self-sensing cantilevers for devices with single digit nanometer dimensions”. In: Novel Patterning Technologies 2018. Ed. by Eric M. Panning. Vol. 10584. International Society for Optics and Photonics. SPIE, 2018, pp. 13–25.

    Google Scholar 

  76. Claudia Lenk et al. “Nanofabrication by field-emission scanning probe lithography and cryogenic plasma etching”. In: Microelectronic Engineering 192 (2018), pp. 77–82. issn: 0167-9317. https://www.sciencedirect.com/science/article/pii/S016793171830039X.

  77. Valentyn Ishchuk et al. “Scanning probe-based high-accuracy overlay alignment concept for lithography applications”. In: Applied Physics A 123.1 (2017), p. 89.

    Google Scholar 

  78. NC MacDonald. “Nanostructures in Motion: Micro-Instruments for Moving Nanometer-Scale Objects”. In: Nanotechnology. Springer, 1999, pp. 89–159.

    Google Scholar 

  79. Mathias Holz et al. “Field-emission scanning probe lithography tool for 150 mm wafer”. In: Journal of Vacuum Science & Technology B 36.6 (2018), 06JL06.

    Google Scholar 

  80. Teodor Gotszalk et al. “Tip-based nano-manufacturing and -metrology”. In: Journal of Vacuum Science & Technology B 37.3 (2019), p. 030803.

    Google Scholar 

  81. Mathias Holz et al. “Parallel active cantilever AFM tool for high-throughput inspection and metrology”. In: Metrology, Inspection, and Process Control for Microlithography XXXIII. Vol. 10959. International Society for Optics and Photonics. 2019, p. 1095929.

    Google Scholar 

  82. Marcus Kaestner, Manuel Hofer, and Ivo W. Rangelow. “Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography”. In: Journal of Micro/Nanolithography, MEMS, and MOEMS 12.3 (2013), pp. 1–14.

    Google Scholar 

  83. Marcus Kaestner, Manuel Hofer, and Ivo W. Rangelow. “Mix match electron beam scanning probe lithography for high throughput sub-10 nm lithography”. In: Alternative Lithographic Technologies V. Ed. by William M. Tong. Vol. 8680. International Society for Optics and Photonics. SPIE, 2013, pp. 259–267.

    Google Scholar 

  84. Juha T Muhonen et al. “Storing quantum information for 30 seconds in a nanoelectronic device”. In: Nature nanotechnology 9.12 (2014), p. 986.

    Google Scholar 

  85. Sushanta Kumar Panda et al. “Characterization of tensile properties of tailor welded IF steel sheets and their formability in stretch forming”. In: Journal of Materials Processing Technology 183.2-3 (2007), pp. 321–332.

    Google Scholar 

  86. Jessica A Van Donkelaar et al. “Top-down pathways to devices with few and single atoms placed to high precision”. In: New Journal of Physics 12.6 (2010), p. 065016.

    Google Scholar 

  87. Jessica Van Donkelaar et al. “Single atom devices by ion implantation”. In: Journal of Physics: Condensed Matter 27.15 (2015), p. 154204.

    Google Scholar 

  88. A Morello et al. “Scalable quantum computing with ion-implanted dopant atoms in silicon”. In: 2018 IEEE International Electron Devices Meeting (IEDM). IEEE. 2018, pp. 6–2.

    Google Scholar 

  89. Michael Ilg et al. “Improved single ion implantation with scanning probe alignment”. In: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30.6 (2012), 06FD04.

    Google Scholar 

  90. J. Meijer et al. “Concept of deterministic single ion doping with sub-nm spatial resolution”. In: Applied Physics A 83 (Jan. 2006), pp. 321–327.

    Google Scholar 

  91. T. Schenkel et al. “Strategies for integration of donor electron spin qubits in silicon”. In: Microelectronic Engineering 83.4 (2006). Micro-and Nano-Engineering MNE 2005, pp. 1814–1817. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S0167931706001699.

  92. A Persaud et al. “Integration of scanning probes and ion beams”. In: Nano letters 5.6 (2005), pp. 1087–1091.

    Google Scholar 

  93. A. Persaud et al. “Integration of Scanning Probes and Ion Beams”. In: Nano Letters 5.6 (2005). PMID: 15943448, pp. 1087–1091.

    Google Scholar 

  94. A. Persaud et al. “Single ion implantation with scanning probe alignment”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22.6 (2004), pp. 2992–2994.

    Google Scholar 

  95. A. Persaud et al. “Micromachined piezoresistive proximal probe with integrated bimorph actuator for aligned single ion implantation”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24.6 (2006), pp. 3148–3151.

    Google Scholar 

  96. Michael Ilg et al. “Improved single ion implantation with scanning probe alignment”. In: Journal of Vacuum Science & Technology B 30.6 (2012), 06FD04.

    Google Scholar 

  97. T. Schenkel et al. “Open questions in electronic sputtering of solids by slow highly charged ions with respect to applications in single ion implantation”. In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219–220 (2004). Proceedings of the Sixteenth International Conference on Ion Beam Analysis, pp. 200–205. issn: 0168-583X. http://www.sciencedirect.com/science/article/pii/S0168583X04000825.

  98. Arun Persaud et al. “Quantum computer development with single ion implantation”. In: Experimental Aspects of Quantum Computing. Springer, 2005, pp. 233–245.

    Google Scholar 

  99. S.-J. Park et al. “Processing issues in top–down approaches to quantum computer development in silicon”. In: Microelectronic Engineering 73-74 (2004). Micro and Nano Engineering 2003, pp. 695–700. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S016793170400190X.

  100. C. D. Weis et al. “Single atom doping for quantum device development in diamond and silicon”. In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26.6 (2008), pp. 2596–2600.

    Google Scholar 

  101. CD Weis et al. “Mapping of ion beam induced current changes in FinFETs”. In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267.8-9 (2009), pp. 1222–1225.

    Google Scholar 

  102. Ingo Pluemel et al. “Direct Assembly of Quantum Confined Nano-Particles”. In: MRS Proceedings 1017 (2007), 1017–DD10–06.

    Google Scholar 

  103. J. Voigt et al. “Nanofabrication with scanning nanonozzle ‘Nanojet”’. In: Microelectronic Engineering 57-58 (2001). Micro-and Nano-Engineering 2000, pp. 1035–1042. issn: 0167-9317. http://www.sciencedirect.com/science/article/pii/S0167931701004476.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, F., Rangelow, I.W., Youcef-Toumi, K. (2024). Active Probe AFM Imaging and Nanofabrication. In: Active Probe Atomic Force Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-44233-9_10

Download citation

Publish with us

Policies and ethics