Skip to main content

Machine Learning for Automated Mitral Regurgitation Detection from Cardiac Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Mitral regurgitation (MR) is a heart valve disease with potentially fatal consequences that can only be forestalled through timely diagnosis and treatment. Traditional diagnosis methods are expensive, labor-intensive and require clinical expertise, posing a barrier to screening for MR. To overcome this impediment, we propose a new semi-supervised model for MR classification called CUSSP. CUSSP operates on cardiac magnetic resonance (CMR) imaging slices of the 4-chamber view of the heart. It uses standard computer vision techniques and contrastive models to learn from large amounts of unlabeled data, in conjunction with specialized classifiers to establish the first ever automated MR classification system using CMR imaging sequences. Evaluated on a test set of 179 labeled – 154 non-MR and 25 MR – sequences, CUSSP attains an F1 score of 0.69 and a ROC-AUC score of 0.88, setting the first benchmark result for detecting MR from CMR imaging sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, N.E., Sudlow, C., Peakman, T., Collins, R., UK Biobank: UK Biobank data: come and get it. Sci. Transl. Med. 6(224) (2014)

    Google Scholar 

  2. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 1–12 (2018)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45 (2001)

    Google Scholar 

  4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020 (2020)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119 (2020)

    Google Scholar 

  6. Dziadzko, V., et al.: Causes and mechanisms of isolated mitral regurgitation in the community: clinical context and outcome. Eur. Heart J. 40(27) (2019)

    Google Scholar 

  7. Enriquez-Sarano, M., Akins, C.W., Vahanian, A.: Mitral regurgitation. Lancet 373(9672) (2009)

    Google Scholar 

  8. Enriquez-Sarano, M., et al.: Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N. Engl. J. Med. 352(9) (2005)

    Google Scholar 

  9. Fries, J.A., et al.: Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nat. Commun. 10(1) (2019)

    Google Scholar 

  10. Grill, J., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020 (2020)

    Google Scholar 

  11. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (2017)

    Google Scholar 

  12. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation. CoRR abs/1801.05746 (2018)

    Google Scholar 

  13. Kervadec, H., Dolz, J., Tang, M., Granger, E., Boykov, Y., Ayed, I.B.: Constrained-CNN losses for weakly supervised segmentation. Med. Image Anal. 54 (2019)

    Google Scholar 

  14. Mirabel, M., et al.: What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 28(11) (2007)

    Google Scholar 

  15. Nian, Y., et al.: Graph-based unsupervised segmentation for lung tumor CT images. In: 2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE (2017)

    Google Scholar 

  16. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2) (2018)

    Google Scholar 

  17. Parcha, V., Patel, N., Kalra, R., Suri, S.S., Arora, G., Arora, P.: Mortality due to mitral regurgitation among adults in the United States: 1999–2018. In: Mayo Clinic Proceedings, vol. 95. Elsevier (2020)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings (2015)

    Google Scholar 

  20. Uretsky, S., Argulian, E., Narula, J., Wolff, S.D.: Use of cardiac magnetic resonance imaging in assessing mitral regurgitation: current evidence. J. Am. Coll. Cardiol. 71(5) (2018)

    Google Scholar 

  21. Vimalesvaran, K., et al.: Detecting aortic valve pathology from the 3-chamber cine cardiac MRI view. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 571–580. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_54

    Chapter  Google Scholar 

  22. Watanabe, N.: Acute mitral regurgitation. Heart 105(9) (2019)

    Google Scholar 

  23. Wu, X., Bi, L., Fulham, M.J., Feng, D.D., Zhou, L., Kim, J.: Unsupervised brain tumor segmentation using a symmetric-driven adversarial network. Neurocomputing 455, 242–254 (2021)

    Article  Google Scholar 

  24. Wu, X., Bi, L., Fulham, M.J., Kim, J.: Unsupervised positron emission tomography tumor segmentation via GAN based adversarial auto-encoder. In: 16th International Conference on Control, Automation, Robotics and Vision, ICARCV 2020, Shenzhen, China, 13–15 December 2020 (2020)

    Google Scholar 

  25. Xing, Z.J., Yin, F., Wu, Y.C., Liu, C.L.: Offline signature verification using convolution siamese network. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017), vol. 10615. SPIE (2018)

    Google Scholar 

  26. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18–24 July 2021, Virtual Event. Proceedings of Machine Learning Research, vol. 139 (2021)

    Google Scholar 

  27. Zhang, Q., et al.: Automatic assessment of mitral regurgitation severity using the mask R-CNN algorithm with color Doppler echocardiography images. Comput. Math. Methods Med. 2021 (2021)

    Google Scholar 

  28. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 8416 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, K., Learned-Miller, E., Kalogerakis, E., Priest, J., Fiterau, M. (2023). Machine Learning for Automated Mitral Regurgitation Detection from Cardiac Imaging. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics